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II. The Calculus of Chemical Operations; being a Method for the Investigation, by

means of Symbols, of the Laws of the Distribution of Weight in Chemical Change.—
Part II. On the Analysis of Chemical Events. By Sir B. C. Brobik, Bart., F.R.S.,
late Professor of Chemistry in the University of Oxford.
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“The Observer is not he who merely sees the thing which is before his eyes, but he who
sees what parts that thing is composed of.”—J. STuART MILL.
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36 SIR B. C. BRODIE ON THE CALCULUS OF CHEMICAL OPERATIONS.

sion, by a system of arbitrary signs, to certain mental conceptions and combinations of
conceptions which enter into exact chemical inquiries. This involves an analysis of
those conceptions. But something more, too, is there effected. For the study of these
questions necessitates the reconstruction (to a certain extent) of the fundamental ideas
of the science and, especially, the reconsideration of a problem supposed to have been,
long since, finally determined, namely, the constitution of the units of ponderable
matter, of which I have given a new theoretical analysis. I shall not attempt to give
any summary of these results, which, in my previous Memoir, have been discussed as
briefly as is consistent with clearness. At the same time I should observe that the
following pages can only be intelligible to those who have already made themselves
acquainted with the principles of this Calculus, and to such alone they are addressed.
There is, however, a point of fundamental importance which as yet has been only inci-
dentaHy touched, namely, the origin of the hypothesis that the unit of hydrogen is an
“undistributed weight,” which is the keystone of the system here adopted, and the
reasons by which that hypothesis is justified, on which it is desirable, before proceeding
further, to offer a somewhat fuller explanation. The following slight outline of the
treatment of the subject pursued in this Calculus is given merely with the view of
introducing these questions. 7

For the effective consideration of the chemical properties of matter it is necessary to
refer these properties to a common standard of comparison. Our first step, therefore,
was the definition of the ¢ Unit of ponderable matter” (I. Section I. (10)). In the
selection of this unit we are guided by the same principles as those on which we select
the unit of length, the unit of weight, the unit of heat, our choice being in all such
cases determined by what is convenient for the special purpose in view. Now the
objects of our study are the chemical nature and transformations of gaseous
matter. If, therefore, we wish to reason with impartiality, we must compare the
properties of equal volumes of gases existing under the same conditions of temperature
and pressure, for no reason can be assigned for comparing unequal volumes. All gases
must be treated alike.

We are thus led to the notion of the  unit of space,” a peculiar and essential feature
of this Calculus. This “unit of space ” is the empty measure in which we measure out
the “units of matter.”” The measure chosen is 1000 cub. centims.; and were we to
measure out the volumes of gases in this standard measure at a temperature of 0°C.
and a pressure of 760 millims., we should be in possession of the “units of matter.”
‘We shall consider this estimate to have been, in some way, made.

Here we are met by the preliminary difficulty that this estimate involves numerous
assumptions, so that our results are by no means conclusive. Evenin the case of actual
gases and vapours we cannot determine our units without, at least, assuming the truth
of the law of MARIOTTE and of the recognized .variation of volume due to changes of
temperature. But the greater number of chemical substances do not exist for us as
gases at all. Here we are driven to select as the “unit of matter” that quantity of
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matter which we infer, from probable reasoning of various kinds, would occupy our
measure, in the gaseous state, under certain normal conditions, if only we could thus
estimate it. Hence undoubtedly our results are liable to be affected with very serious
errors, So that it may be truly said that the theory of chemistry refers rather to an
ideal world created by the reason of man out of the actual world than to the actual
world itself. There is, however, a wide interval between the ideal creations of the
reason and the figments of the imagination. In the long run the former correspond to
realities, and the comparison of the results as to the densities of gases which have
actually been anticipated by this mode of probable reasoning with those subsequently
arrived at by conclusive experiments prove us to be on the right track.

If it be asked why we do not, as is usually done, select a *“ molecule ” as our unit, we
reply, not that the molecular hypothesis is untrue (this would be going beyond the
mark), but that it is unnecessary. We do not object to it, but we do not use it, for we
do not want it for our present purpose. Having thus obtained the ¢ unit of matter,” the
inquiry before us is, by what operations are these units of matter made? We begin
by endeavouring to answer another question, namely, of what are they made? To this
but one rational reply can be given. The units of matter are made of the matter of
one another. But this is not all that can be said, for we may proceed to ask how, in
particular cases, these units are thus made up.

The matter of two units of water, 2C, is made up of the matter of two units of
hydrogen, 2A, and one unit of oxygen, D, and is therefore identical with that matter.
‘We may state this identity in an equation, thus—

2C=2A+4D;

whence
D=2C—-2A,
=2(C—=A).

Now we give a complete definition of the unit of oxygen, D, when we say that the
matter of a unit of oxygen is identical with the matter of two units of water without
the matter of two units of hydrogen; but we may further, from the last equation, assert
that the matter of a unit of hydrogen, A, is a part of the matter of a unit of water, C.
If, then, in the above equation, making this assumption, we put C=B-+A, we have
D=2B.

Further, assuming the matter of two units of water to be identical with the matter of
a unit of hydrogen and the matter of a unit of binoxide of hydrogen*, and putting E
as the matter of a unit of binoxide of hydrogen, we have

2C=A+E,

* The vapour-density of binoxide of hydrogen has not been experimentally determined. If this vapour-
density should prove to be other than that here given, we should be compelled to take a different view of the
constitution of water; but, from all we know, this is a highly improbable contingency.

G 2
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whence, substituting for C the value A+B, we have

and E=A+42B, giving, as the constituents of the unit of matter considered :—

Unit of Hydrogen . . . . . A . . . weighing ‘089 grm.
s Oxygem. . . . . . 2B. . . ,» 1430
, Water . . . . . A+B. . ' 806 ,,

»  Binoxide of hydrogeli . A+2B . s 1520

2

We cannot, from the evidence before us, assign any constitution to the bits of matter.
A and B, nor are we able to make any assertion about these bits of matter, except that
the bit of matter A weighs ‘089 grm., and that the bit of matter B weighs -715 grm.

A bit of matter as to which our knowledge is thus limited is what is here termed a
“ simple” or ““ undistributed weight.” These terms do not refer to the constitution of
the bits of matter A and B, as to which we have no means of forming an opinion, but
to a very different thing, namely, our knowledge of that constitution, which is confined
within narrow bounds determined by our powers of observation and experiment.

The groups of letters A, 2B, A+B, A+2B, although truly symbols or signs of the
matter of which the units of hydrogen, oxygen, water, and binoxide of hydrogen consist,
are not the symbols of those units of matter themselves. A symbol must distinguish
the thing symbolized from other things, but these expressions do not thus distinguish
those units of matter. Thus the expression A+2B indicates (to one who knows the
meaning here given to the letters) the matter of which the unit of binoxide of hydrogen
is constituted ; but it indicates to him several other things besides, namely, the matter
of a unit of hydrogen, A, and the matter of a unit of oxygen, 2B, and also the matter
of a unit of water, A+ B, and the matter of the simple weight B, and also the matter
of the unit of hydrogen, A, and of two simple weights, B and B. So that when such
an expression is presented to us (if no more be said) we cannot tell to which of these
different objects the expression refers. The expression A+42B indicates something
common to all these objects, but does not indicate any one object specially. How, then,
are we to frame such a distinctive symbol? This question has been fully considered in
the first part of this Calculus, to which I must refer the reader for information. I will
here only make one remark. The chemical symbol of a unit of matter, as constructed
on the principles of this Calculus, is an analytical expression which indicates to one
acquainted with those principles that special combination of operations by which, in
the processes of chemical change, the unit has been made up. These operations are
known to us only through their results, and are defined by those results; indeed no
other knowledge of them is practicable ; but this is sufficient for our purpose, which is
the comparison of those results.

That operation which I have here termed a chemical operation, and defined as an
operation performed upon the unit of space, of which the result is “a weight”
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(L Sec. II. (1)), is an operation with one variety of which chemists are familiar under
the name “ chemical combination.”. I have not employed this language, for the terms
are by no means coextensive; and we should be led into unnecessary difficulties by
restricting “a chemical operation” to that particular kind of *chemical operation”
implied in the term “ combination ” with all the ideas which have grown up around it.
If, however, we are willing to discard material images, and consider * combination ” in
a more general and abstract sense, the term will work. TLet «,,2... be the symbols
of the operations of chemically combining the “weights” or bits of matter,
A,B,C,... at 0° and 750 millims. pressure, then x, g, z . . . are termed the chemical
symbols of A, B, C... respectively at that temperature and pressure. Also let zy
be the symbol of the ¢ combination” of A and B, and #yz... the symbol of the
“ combination” of A and B and C..., then zx ... is the symbol of the ¢ combi-
nation” of A and A and A ... Further let z be the symbol of the “weight” or
matter contained in an empty unit of space, then zz (or 2°) is the symbol of the
combination of the ¢weights” (or matter) contained in two empty units of space, and
2? is the symbol of the combination of the * weights” in p empty units of space. But
the “weights” in two empty units of space are collectively identical with the “ weight”
in one empty unit of space, being in both cases “no weight,” and the weights in p
empty units of space are collectively identical with the ¢weight” in one empty unit ;
we have, therefore, =2, and generally xy ...2*=xy... Now among the symbols
of number we have one symbol, and one symbol alone, which satisfies the condition
satisfied by the symbol z, namely, the symbol 1. 1If, therefore, we put 1 as the symbol
of the “weight” contained in an empty unit of space, and-work with this symbol (as a
factor) in the algebra of chemistry, according to precisely the same rules as in general
algebra we work with the numerical symbol 1, we shall never be led into error. My
object in these remarks is to point out the intimate connexion which subsists between
the principles of this Calculus and those fundamental ideas which have been developed
by the requirements of the science®. I shall not pursue the subject, as it has been fully
treated in Part I. Sec. III.

The symbols of the units of hydrogen, oxygen, water, and binoxide of hydrogen, as
thus expressed, are :—

* The objects of chemistry, considered as an art and as a seience, were defined by the illustrious Srams
in the following words :—¢ Chymia alias Alchymia et Spagirica, est ars corpora vel mixta vel compesita vel
aggregata etiam in principia sua resolvendi aut ex principiis in talia combinandi.

“ Subjectum ejus sunt omnia mixte et-composita que resolubilia et combinabilia. Objectum est ipsa resolutio
et combinatio, seu corruptio et generatio,”—Sranr, Fundamenta Ohymice, Norimberge MDCCXXIIL.

The “resolubilia” and ¢ combinabilia” of Sramr correspond to what is here termed ponderable matter
[I. Sec. 1. Def. (1)], while the ‘“ ipsa combinatio” and “ipsa corruptio ” represent, in his order of ideas, what
is here termed a “ chemical operation” [I. Sec. II. Def. (1)].
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Unit of Hydrogen . . . « . . . a,
» Oxygem. . . . . . . . &
s  Water . . . . . . ok,
,,  Binoxide of hydrogen . o . Bl

o being the symbol of the “weight” A, and & the symbol of the “ weight” B.

These symbols involve no hypothesis whatever except the accuracy of the data from
which they are deduced ; and were we ignorant of the existence of the elements chlo-
rine, iodine, bromine, nitrogen, phosphorus, ..., and the other elements (hydrogen
excepted) of the class termed by LAURENT ¢ dyad elements”*, it would be in our power,
proceeding on these principles, to construct a perfectly unhypothetical symbolic system
(which would be open to no difference of opinion) to represent the units of matter.

Now, however (retaining A as indicating the matter of a unit of hydrogen), let E be
the matter of a unit of hydrochloric acid and C the matter of a unit of chlorine. We
have then

2E=A+C,
and

C=2E—A;
the only inference to be mnecessarily drawn from this equation is that the matter of a
unit of hydrogen is contained in (or is a part of) the matter of two units of hydrochloric
acid. .

Assuming each of the two units of hydrochloric acid to be similarly constituted (for
we cannot draw any distinction between them without an assumption, which is totally
unnecessary), this condition may be satisfied in two ways. I. A unit of hydrogen may
be contained in one unit of hydrochloric acid. 1I. A unit of hydrogen may be contained
in two units of hydrochloric acid and not contained in one unit of hydrochloric acid.

Considering Case 1., let E=A+X, C=A 42K, and we have as the constituents of
the units of hydrogen, chlorine, hydrochloric acid,

Unit of Hydrogen . . . . . . A weighing -089 grm.,
5, Chlorine. . . . . . . A+42K ' 3173 grms.,
» Hydrochloricacid . . . A+4K ’ 1631 grm.,

the weight of the bit of matter K being 1'542 grm.
This view corresponds to the hypothesis that the unit of hydrogen is a simple weight.

Symbol of Hydrogen . . . . . . @,
,» Chlorine . . . A
»» Hydrochloric a01d B

In Case IIL. half a unit of hydrogen (and no more or less) must be contained in a unit

of hydrochloric acid. Putting, then, E:% +D, we have C=2D. The constituents of

# LAugENT, ¢ Chemical Method,” Cavendish Society, 1855,
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the several units being

Unit of Hydrogen . 2 x%, weighing 0089 grm.,

5, Chlorine . . . . . 2D ' 3-173 grms.,

» Hydrochloric acid . . %—I—D s 1-631 grm.,

the weight in grammes of the bits of matter %and D being respectively 0-044 grm.

and 1'686 grm. This result corresponds to the view now generally received by chemists
as to the constitution of these units, according to which the matter of the unit of hydrogen
is regarded as constituted of two bits of matter in all respects identical. Were we to
construct the symbols of these units on the principles of this Calculus, we should arrive
at the following system, which corresponds to the assumption that the unit of hydrogen
is constituted of two simple weights :—

Symbol of the unit of Hydrogen a*, weighing 0-089 grm.
' " Chlorine . . . . & ' 3-173 grms.
” o Hydrochloric acid . ac ,, 1-631 grm.

It is important to observe that there are only two such symbolic systems*, which,

* Besides the systems originating in these two hypotheses respectively, there is also the general or indeter-
minate system comprehending both, in which we have

Symbol.
Hydrogen aw
Chlorine . . a'x?
Hydrochloric acid axw
Nitrogen o'v?
Ammonia . . . . . . . . . dYw?

.

If in this system of symbols we put @’'=1, it becomes the system on hypothesis « ; if we put o’=1, it becomes
the system on hypothesis a>. 'We may consider the system to originate in the following manner. Taking the
equation

2E=A 4C,

let X be the matter common to A and C, and Y and Z the other constituents of A and C respectively, so that

A=X4Y,
C=X42Z;
we have then
2E=(X+Y)+(X+%)
and
Y+Z

E=X+ 2 .

Since Y and Z have no common part, % must be a ““ simple weight,” and g also a simple weight, whence

we have the units of hydrogen, chlorine, and hydrochloric acid constituted as follows:—
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without irrelevant assumptions, can possibly be constructed—the system to the base «*,
based on the hypothesis that in chemical transformations the unit of hydrogen is an
“undistributed ”” or ““ simple weight,” and the system to the base a?, based on the assump-
tion that the unit of hydrogen is constituted of two simple weights into which that unit
is distributed in those transformations. These systems are mutually exclusive, and
cannot both be true. Now we are not in a position to assert that the one of these
systems is true and the other false. If so, one system would be applicable and the other
inapplicable to the facts, and in the construction of our system we should get rid of
hypothesis altogether. Tt is rarely, however, indeed that in any case such a scientific
construction is practicable. But failing this, and admitting the inadequacy of our
information, we may still ask, can we give a reasonable preference to the one or the
other system? Even this might be out of our power. To what extent, too, is this
preference to be carried? These are questions of probable reasoning which must be
left to the judgment of individuals ; but if we are to assume these questions to be decided
before we begin to consider them, we may as well not consider them at all.

I may first observe that the two systems are not at the outset placed upon a precisely
equal footing; for it is certain that in a very large proportion of chemical events the

Unit of Hydrogen . . .« « . . X+2(§),
. VA
,» Chlorine . . . . . . X42 (5),

s Hydrochlf;ric acid . . . X+(—§—)+(§);
whence, putting &' as the symbol of the simple weight X, =" as the symbol of the simple weight —YQ, and ' as
the symbol of the simple weight g, we arrive at the equation
2y & =dw?+ax%

This system was pointed out to me, at the time of the appearance of the first part of this memoir, by Professor
G. Sroxws ; it was subsequently noticed by Professor Crun Broww (¢ Philosophical Magazine’ for August 1867),
and again, more recently, by Professor CrrFrorp in a paper read before the British Association at the Meeting
in Belfast, 1874.

This system contains one indeterminate symbol thatis to say, the symbol of one simple weight which cannot
be determined from the data given in the equation. If we had before us merely the single equation just con-
sidered, we could not possibly say, without an arbitrary (and therefore unmeaning) assumption, to which of the
two special systems it was to be referred ; and the only rational course to pursue would be to express the result
in the indeterminate system, thus keeping both hypotheses before us. But the case is different when we come
to consider the expression of the total system of chemical equations, which afford us the means of selection with
probability, although not with certainty, between the two determinate systems.

# In Part I Sec. VIL (1) I have termed « the “modulus ” of the symbolic system, it bemg that symbol by
which the form of every other symbol of the system is regulated. As I have occasion to use the term * modulus ”
for another purpose, this use of it would give rise to ambiguity, and I shall substitute for it the term ¢ base.’
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unit of hydrogen is not “distributed,” and is necessarily (unless we make totally un-
meaning assumptions) to be expressed by one prime factor a. 1If, therefore, we are to
depart from this principle some ground must be shown for so doing.

The comparative value of two hypotheses may be tested by following these hypotheses
out to their consequences, and comparing these consequences with the facts to which
the hypotheses are to be applied. If we find that one hypothesis is applicable to all
the facts, while the other is applicable to only a portion of those facts, the latter hypo-
thesis is inadmissible. But both hypotheses may include all the facts, and be equally
applicable to them, including in each case precisely the same facts. 1In this case both
hypotheses are equally tenable, and we have no means of giving a preference to either.
But there is another case: both hypotheses may include all the facts, and so far either
may serve our purpose; but one of the two may also do more than we want, covering
more ground than is required, and indicating improbable results. In this case that
hypothesis is to be preferred the consequences of which most exactly coincide with the
facts, namely, the more restricted hypothesis.

Assuming, then, that we are in possession of the symbols of the units of ponder-
able matter constructed, with logical precision, upon these two several hypotheses,
let us consider the consequences to be deduced from the expressions thus assigned to
them.

To simplify the problem, let us take the case of the compounds of hydrogen, chlorine,
oxygen, carbon.

If m units of any chemical substance be made up of p units of hydrogen, p' units of
chlorine, ¢ units of oxygen, and 7 units of carbon, m, p, p', ¢, r being positive integers,
what are the relations, if any, by which these integers are connected? ‘We shall assume
m, P, P's ¢, * to have no common measure.

1. We will first consider hypothesis ¢>.  On this system we have :—

2

Symbol of Hydrogen . . . . @

Chlorine . . . . . ¢,

2

” Oxygen . . . . . &,

¢
’s Cartbon . . . . . #,

the last two symbols being identical in the two systems. The symbol, then, of a unit of
matter, expressed by the prime factors «, ¢, &, =, is a*c"€"x*" [I. Sec. V.], whence,
from the conditions of the problem, we have '

m a® cnl En” ;an=‘pa2+-plc‘2+952+rzt;

whence [I. Sec. V. (10)]
nm=2p,
a'm=2p,
MDCCCLXXVIL H
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n'm=2q,

n

n'm= tr,

and

2p epe e
n=7,-, a positive integer,

!
2
n= m 2 29
n_29
= m 2 bR
o
m 2 2

It appears from these equations that m is either a factor of p, p/, and ¢, or is of the
form 2m,, where m, is a factor of p, ¢/, and ¢.

Further, since m is a factor of #r, if m be a factor of p, p', and ¢, m is prime to 7, and
m is a factor of . If m=2m,, since m, is prime to r, m, is a factor of £. If we assume,
therefore, in conformity with the results arrived at as to the symbol of carbon (I. Sec.
VII (2)), ¢=1 and £=2 as the most probable assumptions in the case of that symbol,
we have in the former case,

,
— [/ —— —
t=1,2"=_, and m=1,

in the latter case,

t=2,n" - ;

.om

whence either m=1 or is of the form m=2m,, where m, isa factor of ». But mis prime
to 7 ; therefore we have on these assumptions only two values for m, m=1 or m=2. It
is, however, to be borne in mind that this limitation of the value of m implies a more
definite knowledge of the hypothetical density of carbon than we possess. These results
are the only consequences to be here deduced from the joint hypotheses that the units
of ponderable matter are made up of an integral number of simple weights, and that
the unit of hydrogen is constituted of two identical simple weights. The application of
these principles will be readily seen in a particular case. For example :—

One unit of trichloracetic acid weighing 7-308 grms. is identical with half a unit of
hydrogen, three halves of a unit of chlorine, one unit of oxygen, and some unknown
number of units of carbon (to be hypothetically determined) weighing 1:072 grm.
Putting the symbol of carbon as x’, where ¢ is an undetermined integer, we will

call this unknown number of units —-. Expressing this identity in an equation, we have
L ,

m 3m; '
m, ac’E == o’ +—5+ ¢*+m & +Ra'
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and
2m, ac® & ©’=m, a*+3m, *+2m, E*+2Rx~".

Comparing this equation with the general equation given above, we perceive that it
falls under the case m=2m,, where m, is a factor of p and p' and g¢.

If we assume ¢=1, which corresponds to the assumption that the weight of a unit
(that is, of 1000 cub. centims.) of carbon vapour at 0° and 760 millims. is 0:536,
;-::2, R=2, and m,=1, the equation being |

1 .

208 =a*+ 3¢*+ 25 4 4x.
If we assume £=2, which corresponds to the assumption that the weight of a unit of
carbon vapour is 1-072 [I. Sec. VIL. Group 2, IIL.], %::1, R=1, m,=1, the equation
1
being
2ac® E B*=a?+ 37+ 2874 24°.

Again, one unit of dichloracetic acid is identical with a unit of hydrogen, a unit of
chlorine, a unit of oxygen, and (as before) R units of carbon. In this case m is a factor
of p, p', ¢, the equation being

ma’ e E=ma*+mc+mE 4R
There are two forms of this equation, corresponding to the hypotheses ¢t=1, {=2:

t=1, & P E =0+ E 42z,
t=2, @ E ="+ +E+7.

No limitation whatever is imposed by this hypothesis on the value of n, #/, n", n".
Two cases may be discriminated :

1) m=1, n=2p, n'=2p', #"=2¢, "' =7,
P P q v
(2) m=2, n=p, n'=p, n'=q, W'=r;

it being always remembered that m, p, p', ¢, » have no common measure.

It hence appears that every combination of the letters , ¢, &, z of the form a"¢"&"'%
is the symbol of a unit of ponderable matter capable of being resolved into some number
of units of hydrogen, chlorine, oxygen, and carbon, on the assumption here made as to
the constitution of those elements.

Now the symbols of all known compounds of these elements are to be found among
these combinations, with their density and composition correctly indicated to us. Hence
the hypothesis that the symbol of hydrogen is @® covers the whole ground, and is suffi-
cient for our purpose. If it be defective, it is not by reason of its insufficiency. But
there are other points to be considered.

II. On the hypothesis «, namely, that the symbol of hydrogen is to be expressed by
one prime factor, we have :—

"

H2
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46
Symbol of Hydrogen . o,
’ Chlorine . . . . . @
» Oxygen. . . . . . &,
Carbon . %,

bb)

the symbol of a unit of matter as expressed by the prime factors a, x, &, z being
an%n’ Eu” z'nl " A
From the conditions of the problem we have

manxn’gn”xn"’=ﬁ“+lex2+g£2+7.zt;

whence
nm=p+p/,
'm=2p/,
n'm=2q,
n"'m=tr,

and
U
PP, positive integer,

n="—",

2p
b2 )

=L
n »

2q
bb)

n_—=4
n'= bb)

tr
2

([
- 2

There are two cases.
I. m is a factor of p, p/, ¢ and is prime to 7.

r .
If ¢=1, #""=—, and m=1, since p, p', ¢,  are so taken as to have no common

measure, and
n=p +_P"
n'= 2}7’,
n'=9 7,

n’":T.

If t=2, 2" =?ﬂ_: In this case m may have one of two values, m=1 and m=2. In

the case m=1, we have
n=p+p,
w=2p,
n'=2¢q,
" =2,
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In the case m=2,

p+p
n="5",
Ipl
n=p,
nn:g’
n”’:%

II. m is of the form 2m,, where m, is a factor of p' and ¢.

—p+p
N="—"—
2m,’
-
— 9
m
7’&""""9",
m,
m__ﬁ_.
T 2my
- r
1) If ¢=1, n’"=2~m—l, m,=1, and
+ ,
n=-45"
n'=p,
,n"_:q,
mr,
=3
(2) If ¢=2, 7@"’:7—2-, m,=1, and
1
!
%—:p-;pa
| |
n=p,
n":g,
n" =r.

In this case we have

47

It appears therefore that, in the case of the hypothesis that the symbol of hydrogen
is expressed by one prime factor , m (as in the case of the previous hypothesis) may
have two values and two values only, m=1, m=2. If m=1no restriction is placed on
the values of the integers p, p/, ¢, r; but if m=2, p+p' must be an even number.

Referring again to the system of equations

nm=p +P',
nm=2p',
n'm= 2g,

n"'m=rtr,
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we have from these equations
a2

np+p

. 29/ .. b e
Now the values of the fraction ]7_%5, for all positive and integral values of p and p'

(whatever be the value of m) are comprehended between the limits 0 and 2.
If p'=0,

o
p+p’_0'
If 1)::0, o
£ =2
p+p

It hence appears that if the symbol &""£"'%™" is to satisfy the conditions given in the

equation

‘ ,)nan%n’ n”zn’”:p“ +plwx2+g£2+7.%t,
a restriction is placed by the conditions of the problem upon the values of the integers

!
7 and 7/, which must be so selected that % shall not be <0 or >2.

!
If -Z—:O, p'=0, and the equation becomes
me"E" 2" =pa--q&*+rx'.

!
If %:2, p=0, and the equation becomes
munxm ”%n”‘:-p'“x2+g52+7%t'

No restriction exists on the values of #” and #". We may notice the two forms :—

(1) m=1,
n=p+p',
' =2y,
n! = 2 7
W =r,
{n”’ =27,
(2) ¢ m=2,
n =Z)—+2-£s
n’= l,
%qu’
{'n;l”_T,
nm_’_z',
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For the interpretation of the symbol of a unit of matter it is essential that we should
be informed of the conditions which that unit is to satisfy, apart from which no inter-
pretation is possible, for the same symbol may have its origin in many ways. The way
in which the symbol originates is defined by the equations; thus, in the present case, to
interpret the symbols &™¢"&™' %",

n is the ratio of the sum of the units of hydrogen and chlorine formed to the
number of units of matter decomposed ;

n' is twice the ratio of the number of units of chlorine formed to the number of
units of matter decomposed ;

n' is twice the ratio of the number of units of oxygen formed to the number of
units of matter decomposed ;

n" is ¢ times the ratio of the number of units of carbon formed to the number
of units of matter decomposed, being (probably) 1 or 2.

For example, to interpret the symbols ay, 2£. In both cases n=1. That is to say,
ay and «f are symbols of two units of matter such that the sum of the units of
hydrogen and chlorine formed by their respective decompositionsis equal to the number
of units thus decomposed. In the case of ay, #'=1, #'=0, n""=0, that is to say, the
ratio of the units of chlorine formed to the units of matter decomposed is as 1 : 2. No
oxygen and no carbon are formed in the decomposition. In the case of a&, %/ =0, n'=1,
n"=0. The ratio of the units of oxygen formed to the units of matter decomposed is
as 1: 2, no chlorine and no carbon are formed. These properties characterize the
respective units of hydrochloric acid and of water. Again, in the case of the symbol
«’y5x (the symbol of the chloride of acetyl), n=2. The sum of the units of hydrogen
and chlorine formed by the decomposition of the substance is twice the number of units
of the substance decomposed. #/=1, the ratio of the units of chlorine found to the
units of matter decomposed is as 1: 2 . #"=1, the ratio of the units of oxygen found
to the units of matter decomposed is also 1:2.#"=1, the ratio of the units of
carbon formed to the units of matter decomposed is as 1 : #, where ¢ is assumed to be
1 or 2. 'We hence are always able, from inspection of the symbol, to reconstitute the
equation whence that symbol was derived.

The preceding reasoning may be extended to the general case. Let m units of any
chemical substance o x"a™v™ ... &"¢" 0", .. x"%" ... be identical with p units of
hydrogen «, p’ units of chlorine ey’ p" units of iodine wa?, p" units of nitrogen ...,
¢ units of oxygen £, ¢’ units of sulphur ¢, ¢" units of selenium 2. .., 7 units of carbon x,
7' units of mercury 8, #' units of zinc & ..., so that

n'

may "L EN G L 2L =patplay® +plest +p e+ . L
F 9+ g+ g2+ .. S,

we have then the following equations connecting the positive integers m, n, o/, . ..

% A
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mn:]‘)+]0,+_p"‘+10l:'+ .
! ! 7 2p!
mn =2p", n' =",

ol
I o r =P
mny, =2p", m=- -,

mily =2p", np = “—

.......

29
n " £
mn' =2q , n' =",
2q'
n ! n
mny =29, m =7,
2¢'
"ol n__“9
mn, =2q4", n, = -,
”
mn'"=r , n'=-—,
m

J

7

[/ E———} m __.
mn =¥, n ==,

, "
m__"T

I 1"
= Ny =
oy My m’

My

whence, putting
X)) =p' +p" +"
2q) =q¢ +¢ +0"+ ...
3r) =r +r +7" 4. ..,
S(w) =n +n +0 + . ...,
Sy =n" 40! 40 + ...,
S(a") =" 420" +a'+ . . . .,

we have

_p+2(p)
n=——"""

2(”’)222”(30,),

Z(n”):g—%g—),
2(r)

m

E(nl,’l)z
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And reasoning as before, since m is prime to some one, at least, among the numbers
. g > » ’

2o 00, ¢ ¢ o, P 0" L, if m be prime to some one among the
numbers 7, 7, 7', ... m=1. If m be prime to any one among the numbers ¢/, p", p",
.. 9, ¢, 9", and be not prime to any one among the numbers 7, 7, ..., m=2. If m
be not prime to any one among the numbers p', p", p", ...q, ¢, ¢"y ... v, ¥, ¥, ... m is

also not prime to p, which is contrary to the construction. Therefore. m=1 or m=2.

If m=1, a=p+3(p),
2(n)=22(p');

if m=2 | n _p+2(7)
? - 2 s
2(n)=2(p),

the condition being that p43(p') is to be an even number.

‘We have also
() _ 23(p")

n ~ p+3(p)’

whence, in addition to the conditions

!
;—5 not <0 not >2,

it
n 2 2 b
"y
n 3 b2 »
we have
S (a!
) not >2.
n
The symbol e"y&™. .. £¢" ... z""8"" ... is to be interpreted on the same principles as

the symbol a"y"E"z"" previously considered. Thus to interpret the symbol ayw, here
n=1, the sum of the units of hydrogen, chlorine, and iodine formed by the decom-
position of the substance when decomposed into these elements is equal to the
number of units of the substance thus decomposed, #'=1, n\=1; of the units of
‘hydrogen, chlorine, iodine thus formed % are units of iodine and  units of chlorine,
no hydrogen being formed. These are the characteristic properties of the unit of
chloride of iodine. _ ,

This reasoning may be further extended so as to include the case of the elements
phosphorus «°¢* and other elements similar to it in form.

Both hypotheses, therefore, so far agree that each covers the whole ground, and
includes all known compounds of carbon, hydrogen, oxygen, chlorine ... But the

MDCCCLXXVII. I
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system of combinations constructed upon hypothesis  does not include those pretended
compounds of carbon, hydrogen, oxygen, chlorine (recognized as possible compounds of
these elements in the other system)in the case of which the sum of the units of
hydrogen, chlorine. .. (and generally the sum of the units of the dyad elements) formed
by the decomposition of two units of the compound is other than an even number.
Hypothesis « affords no means of manufacturing these compounds; so that we are led
to the conclusion that such things are to be regarded as mere * non-entities” or ¢ mon-
strosities,” combinations of incompatible ingredients, which cannot be made up, by any
known chemical operations, of the matter of those actual chemical elements out of
which all known chemical existences are constructed®. It is hardly necessary to
observe that such things cannot, as a matter of fact, be made—the limitation intro-
duced by hypothesis o being the celebrated law of Even Numbers, discovered as an
empirical truth by LAURENT and GERHARDT, which is here referred to its origin, and
deductively established, as a consequence of this hypothesis.

Were we to proceed to enumerate the combinations of hydrogen, chlorine, nitrogen,
and the other dyad elements, as indicated by the two hypotheses respectively, and com-
pare the systems thus indicated with the systems actually existing, we should find that
the combinations indicated in the case of hypothesis a* were twice as numerous as in the
case of hypothesis «; and we should, in fact, on this hypothesis (¢”) make a blunder in
«every alternate statement, knowing neither more nor less about the result than we do in
tossing a halfpenny whether it will fall head or tail—a position very different to that of
one who, having obtained information that the coin is weighted, never makes any such
mistakes at all, which is our position on hypothesis «. That the conclusions to which
we are thus brought as to the nature and relations of these dyad elements are truly of
a remarkable character is not to be denied; but it is a sufficient reply to those persons
who make difficulties on this score, that they may just as reasonably object to the facts
on which these conclusions are based, which are equally remarkable with the conclu-
sions ; and, moreover, that the value of an hypothesis is to be tested, not by the coin-
cidence of its conclusions with our previous expectations, but by their agreement with
the facts which we wish to explain.

Now it may be contended, admitting it to be true that hypothesis « puts a correct
limitation upon these combinations, yet this advantage is gained at too great acost. It
rejects indeed (it may be said), and rightly, the combinations rejected by the empirical
law of Even Numbers, but, in so doing, opens the door of the system to a large number
of compounds totally unknown to us. Thus while we eradicate one set of impossible
existences, we introduce another. Where, it is asked, are the elements x, »,v..., or

# ¢ Desinit in piscem mulier formosa superne.” The construction of the unit of a chemical substance to be
resolved into two units of hydrogen and three units of chlorine presents the same order of difficulties as the
combination of the head of a woman with the tail of a fish. We cannot imagine how such a thing could be

produced !
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such combinations of these elements as the units «y?® x& %, #x*... and the like?
But this argument does not come to much. Our only choice lies between the two
hypotheses in question, and hypothesis a* is attended with far graver difficulties; for
in this system the real and unreal combinations are mixed up together, which is
not the case on hypothesis . On this latter assumption we do not introduce among
the units made up of the matter of our actual elemental bodies the unit of any
chemical substance whatever which cannot be thus made up; so that the system with
which we have to work makes no false assertion, but is from the beginning properly
constructed. A sharp line of demarcation is drawn in it between what is and what
is not, our actual system of chemical combinations appearing to us as a fragment
of a wider and unrealized system, of which it is a part and in which it is compre-
hended.

The relation of the two hypotheses will be readily appreciated from the following
diagrams :—

Hypothesis a.

Figure I. represents to us the system of combinations on hypothesis «. The total
area included within the outer contour indicates what I may term the region of possible
combinations—that is to say, of the combinations, actual or conceivable, of the simple
weights of the system e, y, & @, . . . by which we may consider it to be occupied. This
region is divided into two subordinate regions—the region of actual existences, namely,
the region occupied by the combinations made up of the matter of our actual elemental
bodies, hydrogen, chlorine, iodine, nitrogen, oxygen, carbon, and the like, indicated by
the shaded space ; and an unknown or unexplored region, external to this, containing
the combinations of these same simple weights which are not thus made up and of
which we have no actual representatives. Were we to write down in each region the
symbols of the combinations by which we thus consider it to be inhabited, we should
place within the shaded space the symbols satisfying the conditions given by the law of
~ even numbers, and in the open space the symbols which do not satisfy those conditions.
12
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Figure II. is constructed on the same principles, to indicate the combinations on
hypothesis a®. The area within the outer line comprehends the region of possible com-
binations, actual or conceivable, of the simple weights of the system* a, ¢, 4,n,%, .. .,
all of which are constituted of the matter of our actual elemental bodies, and are capable
of being resolved into them. But this region is divided into a system of annular spaces»
of which only each alternate ring is actually inhabited. The occupied regionsare indi-
cated by the shaded spaces, and are assumed to be tenanted by those substances which
satisfy the law of even numbers; while the unexplored regions, indicated by the open
rings, are occupied by the imaginary substances which do not satisfy this law. It is
therefore a mere mistake to consider hypothesis « to be in any sense more hypothetical
than hypothesis @>. Both hypotheses indicate to us the possible existence of a system
of unreal things; but there is a wide difference in the relation subsisting between the
realities and unrealities on the two views respectively. If we consider the operations of
nature to be directed, as a flight of arrows at a target, to the construction out of the
matter of our elemental bodies of asystem of chemical substances made up of the matter
of those elements, on hypothesis « the arrows go direct to the mark, this aim is pro-
perly attained ; if no arrows appear in the outer rings of the target, it is that they lie
wide of the mark; whereas on hypothesis o, while the object aimed at is the same,
the arrows are placed exclusively in the alternate or coloured rings of the target,
2, 4,6, ..., while the white rings, 1, 3,5, .. ., have no arrows placed in them at
allf. The former hypothesis, therefore, leads to results perfectly consistent with
the view that the operations of nature are directed to this end, while the results
to which we are brought by the latter hypothesis are absolutely inconsistent with this
view.

Although the actual existence of those substances which lie external to our system is
by no means a necessary consequence of our hypothesis (for we certainly cannot expect
to be able to do all that is possible to be done), and the construction of these substances
may be a problem altogether beyond the range of our experimental powers, yet it must
be admitted by any who hold to the principles of this method that the appearance upon
the scene of these “ ideal existences ” is at least a possible phenomenon ; and it is not
without interest to consider our position in regard to this contingency. Two reasons

+: HCINO

z-e'E, 2y B g;--o

1 In figure I. we should have within the central shaded space in the case of the combinations a® ™ w™...,

those combinations in which the ratios 7;’71, %, ... were severally not <0 not>2, while in the open space the

combinations would appear in which this condition was not satisfied. In figure II., considering the symbol

a™ ¢™ ™, ..., we should have in the shaded spaces'2, 4, 6, . . ., the combinations of these letters taken
2and 2, 4 and 4, 6 and 6, . . . together, which combinations are represented in our actual system of things ;

while in the open spaces, 1, 8, 5, . . . we should have the combinations of these same simple weights taken
singly, 3 and 3, 5 and 5, . . ., which are non-existent combinations.
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may be given for believing this to be possible: the one, of an abstract kind, derived
from the fundamental property of chemical symbols given in the equation

o =a+2y,

whence it may be argued that, as we can theoretically resolve «y? into « and x and ¥,
we are not justified in shutting our eyes to the possibility that the unit of chlorine may
actually be resolved into a unit of hydrogen and two units of the (as yet) unknown ele-
ment x. The argument is just, but the presumption thus raised is excessively slight ;
for we are able to make (on any hypothesis) so very small a proportion of the vast
number of chemical substances, the possible existence of which is similarly indicated to
us, that we have no expectation, capable of being estimated, of making any one substance
in particular. In short, the thing is possible; but on these grounds alone we cannot
expect to be able to do it. The second argument is of far greater weight. It may be
put thus:—All persons would admit the validity of our conclusions if, having first
detected the element y, thus latent in its compounds, we were able to verify our hypo-
thesis by digging it out. y having been discovered, there would be but little doubt as
to the existence of » and ». 'We have not got quite to this point, but nevertheless we
are not so very far from it; for we can show clearly that the application of the very same
formal principles of reasoning to existing facts would have enabled us similarly to detect,
prior to their isolation, the latent existence in their compounds of elements which have
actually been isolated *.

Were we able to conduct our chemical experiments only between certain fixed limits
of temperature (let us say between 0° and 300°C.), a barrier would be placed upon our
researches. We might still conduct innumerable experiments, but the science which
resulted from them would be essentially different to our present chemistry. Between
these limits of temperature the appearance of the element carbon in any system of
chemical transformations is a rare phenomenon indeed; and it is by no means difficult
to place ourselves, by an effort of imagination, in the position of chemists who should
have a very varied and extensive knowledge of the chemical properties of the compounds
of carbon, and yet be totally unaware of the existence of that element. Let us imagine,
then, some unknown world, some Laputa (devoted to philosophy)in which the chemistry

* Chemists are placed in regard to the ideal elements %, w, 3, », and those combinations of them which
cannot be resolved into our actual elemental bodies, in a very similar position to that occupied by astronomers
(if I may venture on such a comparison) towards the planet Neptune prior to its detection by the telescope.
The existence of the planet Neptune could be inferred, as a highly probable contingeney, from the perturbations
of the orbit of Uranus ; and yet this planet might have remained for ever unseen by man, So, too, the existence of
the element 5 may be similarly inferred from the peculiar forms of chemical metamorphosis ; and yet this ele-
ment may never be isolated as an independent reality. It inay exist and exercise (so to say) an appreciable
influence upon the movements of our system, and nevertheless lie far beyond the range of facts accessible to our
methods of experiment. No scientific hypothesis can have any claim whatever upon our notice which is inca-
pable of experimental verification (a truth too often forgotten in chemical speculations); but this verification
may be a very tardy process, and involves numerous trials and numerous failures before in either sense (so as
to enable us to deny or affirm the hypothesis) it is accomplished.
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was of this order. How would the Laputians proceed with the scientific construction
of the symbols of the units of matter? Two units of marsh-gas (they would say) are
identical with three units of hydrogen and a unit of acetylene. Having solved a similar
problem in the case of ammonia [I. Sec. VIL (8)], they have no difficulty in at once
writing down as follows the symbols of these units on the two hypotheses « and @’
respectively :—

Hypothesis a.  Hypothesis «®.  Weight in grm.

Hydrogen . . . . . . « @ 0-:089
Marsh-gas . . . . . . &% a'v 0-704
Acetylene . . . . . . af v 1-161

The simple weight v, which appears in the symbols as expressed on hypothesis @,
weighs 0-58 grm. '

We shall suppose our chemists to be in possession of those substances of which the
matter is identical with the matter of acetylene, hydrogen, oxygen, chlorine, and our
other elements, the material of an ample chemistry. Proceeding with the construction
of the symbols of the units of matter on the two hypotheses, they would find both to
be applicable as indicated in the following examples :—

Hypothesis a. Hypothesis a®

Benzol . . . . . . . . &% v°
Olefiant gas . . . . . . . o'’ o’y
Allylene . . . . . . . . o’ o’
Methyl . . . . . . . . % o'v®
Propylene . . . . . . . o’z a’®
Ethyl. . . . . . . . . a% o’v*
Allyt . . . . . . . . . o a'tf
Formic acid. . . . . . .  ox£ avk?
Methylic alcohol . . . . .  &’%& «’vE
Oxide of ethylene . . . . %% o’V
Alcohol . . . . . . . . &% a'v’E
Benzylic alcohol . . . . . a'& av’é
Aceticacid . . . . . . . & g
Glycol . . . . . . . . «'v’E?
Glycerine . . . . . . . o' o’V
Anhydrous acetic acid . . . o€ RN
Acetic peroxide . . . . . &% w’viEt
Lacticacid . . . . . . . o&%& AT
Chloride of methyl . . . . oy w’ue

’ s ' coe .. oy’ avc?

Chloroform . . . . . . . o’y vc®
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Chloride of ethylene . . . . o™ aw’c’®
Chloride of acetyl . . . . . &% av’cE
Chloraceticacid . . . . . o*x%? av’cE?
Chloriodide of ethylene . . . oywx’ o’v’ct
Hydrocyanic acid . . . . . oz un

Methylamine . . . . . . %z o’um -
Trimethylamine . . . . . oY% o’v’n

It is thus evident that the Laputian philosophers might have proceeded a long way
indeed in the study of the metamorphoses of the compounds of carbon, and yet take a
very different view of the nature of these compounds to that taken by ourselves. In
their eyes the group of hydrocarbons would appear as compounds of hydrogen and
the element acetylene, of which they would possess in benzol an allotropic modification.
Besides these they might have innumerable compounds of acetylene and their other
elements, of the kind indicated in the Table. :

Proceeding with their deductive investigations, they would arrive at the law of even
numbers, and applying this critical test to the compounds of acetylene, would arrive at
the following equations:—

20’2 =30+ ax®,
202 %* = o+ Bour?,
20%%2° = B0 + Bee?,
o’ =a 4202,
202} =20+’ + oury?,
20 %y = 3o+ ox?,
20y’ =20y’ + o+ £,
20 y2’E =+ oy + 20+ 287,
2% ywn® =20+ ay® + aw® + 2a4?,

The Laputian philosophers may be assumed to have had great reliance on their
deductive processes, and would doubtless have said at once that these facts afforded
a solid ground of preference in favour of their hypothesis e—indeed that the other
hypothesis was relatively untenable. Nevertheless we may believe them to have felt
some satisfaction when, on descending from their floating island to our earth, we showed
them the process by which acetylene was manufactured by Berraeror from hydrogen
and carbon, and thus turned their hypothesis into a demonstrated truth.

There is, however, a difficulty in the way of the unqualified acceptance of hypothesis
a, of a very real character, namely that it does not, primd facie, appear to be in perfect
concordance with facts. Now the facts to which this remark applies are of two classes :—
(1) The assumed densities of gases which are not in accordance with either of the two
hypotheses « and o’, and (2) assumed densities which are not primd facie in accordance
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with hypothesis @, but which are not discordant with hypothesis e*. In the former case
the units of matter cannot be expressed by an integral nuinber of prime factors, either
on hypothesis e or on hypothesis ¢*; in the second case the units of matter can be
expressed by an integral number of prime factors on hypothesis a2, but cannot be so
expressed on hypothesis . The question has been (up to a certain point) discussed in
Part 1. Section VIIL, where a Table is given of these exceptions [Part I Sec-
tion VIIL (3)].

I shall not enter on the former class of exceptions, not only for the reason that the
difficulties presented by them are not peculiar to this method, but also that these
obstacles are rapidly being removed by a careful scrutiny of the facts, and so many such
obstacles have actually disappeared that the removal of the rest must be regarded simply
as a question of time and trouble. The second class of exceptions, however, stands on
a very different footing. They go to the very root of the matter, and no rational expla-
nation of these exceptions has (so far as I am aware) been ever suggested from the
present point of view of chemistry. We will fix our attention on two salient examples,
the binoxide and tetroxide of nitrogen.

Assuming the gaseous densities of these substances as given by various observers to
be the true densities of homogeneous gases, it must be admitted that the ponderable
matter of two units of binoxide of nitrogen is identical with the ponderable matter of
a unit of nitrogen and a unit of oxygen; and alsoit must be admitted that the pondex-
able matter of two units of tetroxide of nitrogen is identical with the ponderable matter
of a unit of nitrogen and two units of oxygen. The facts here stated are incompatible
with the expression of the symbols of the units of the binoxide of nitrogen and of the
tetroxide of nitrogen respectively by an integral number of prime factors, on the hypo-
thesis that the symbol of hydrogen is expressed as « [Part I. Section VIII. (2)]; for we
cannot find, on that hypothesis, any positive and integral solutions of the indeterminate
equations connecting the integers, which are the indices of the prime factors by which
these symbols are expressed. '

Now if this be regarded as a true statement of the facts, it must be allowed that the
binoxide and tetroxide of nitrogen are not only (what indeed, perhaps without excep-
tion, they are) the most curious of all chemical substances*, but are absolutely unique
objects not made in the same way as other things, or turned out of the same workshop
with them ; in short (as I before said) they must be * chemical monstrosities,” ¢ lusus

* Laugext endeavours to get out of the difficulty by drawing a distinction between the molecule and (what
I have termed) the unit. The unit, he says, is indeed NO, but the molecule is N, 0,. As, however, a mole-
cule can only be defined by referring it to the unit and saying that in all cases two units of matter are consti-
tuted of an equal number of molecules, this explanation is not very satisfactory, although it is a path in which
Laurext has been contentedly followed by the greater number of chemists. Lavrext was fully alive to the
difficulties of the case, as appears from the following sentence :— Unfortunately nitric oxide and peroxide of
nitrogen are such singular bodies that it appears somewhat difficult to discover their analogues,” taken together
with the note attached (‘ Chemical Method, translation, Cavendish Society, 1855, p. 82).
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nature,” which cannot be generated by any known process of generation. Without
venturing to impose any limit on the powers of nature, we yet should think twice about
the evidence before committing ourselves to belief in a mermaid; and I must confess
that I feel a similar hesitation in believing in the existence of any chemical substance
made out of hydrogen, oxygen, and nitrogen which cannot be made by the operations
o, £, and v. We are not, however, driven into this corner.

First, we may notice in regard to one of these two substances, namely, hyponitric
acid, that the observed density of the gas is not a constant, but varies with the tempe-
rature at which the observation is made. This point has been observed in three inde-
pendent sets of experiments by Prayrair and WaNKLYN, by MULLER and by DEVILLE,
the results being in the main concordant. 'When the density is taken at a low tempe-
rature, it approximates to, although it does not reach, the number corresponding to the
symbol e’5*; thus we have :—

Density Density
Observer. : Temperature. (Air 1). (Hyd. 1).
DEVILLE . . . . . . . 267 2:65 38:24
MoLier . . . . . . . 20 270 3896
Prayrair and WANKLYN . . 245 2:62 36-39
s 95 .o 11-3 2:64 3819
. . . . 42 2:59

The density corresponding to the symbol w®E* is 46-0, showing a difference between
this number and the lowest observed density of about 15 per cent.

As the temperature of the gas increased the density diminished, until the observed
density (in the observation made) attained a numerical value of 157, after which the
observations ceased.

In the following Table these densities are calculated on the hydrogen scale, and also
in the usual manner, the density of air being assumed as 1 :—

Density Density
Temperature. (Air 1). (Hydrogen 1).

100-1 168 2424
111-3 165 23:80
1216 1-62 23-36
1350 160 2314
164-0 1-568 22-80
1882 157 22-60

Now the theoretical density of the tetroxide of nitrogen symbolized as «»*£* is on the
hydrogen-scale 46, and on the air-scale 3-19. Half this density, therefore, is on the
hydrogen-scale 23, and on the air-scale 1:59. The conclusion to be drawn from these
numbers, therefore, is that the gas undergoes a gradual expansion with the increase of
temperature until at about 1560° this limit is attained, so that the constitution of the
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gas at the lower temperature is essentially different from its constitution at the higher
temperature. But in what does this difference consist ?

If we are to discuss such questions with advantage, we must be content to advance
from the known to the unknown, and base our reasoning upon analogous cases with
which we are already acquainted. Here, again, I shall venture to give an illustration
of the subject from the chemistry of Laputa.

The Laputians, like ourselves, had their chemical difficulties. Two problems espe-
cially had perplexed the heads of their philosophers (although, indeed, some of their
chemists saw no difficulty in them at all). They had in their possession two chemical
substances, to the units of which they had for various reasons assigned the symbols ax?s
and ax’£*, and of which they had confidently predicted the densities (or weights of the
units) on their hydrogen standard to be respectively 29 and 45. When, however, their
best experimentalists came to take the density of these gases, this density was found to
be in each case only half that at which it had been estimated, namely 14'5 in the case
of ax?£?, and 22+5 in the case of ax’5.

The difficulty was serious enough ; for hitherto in the construction of the units of
matter from acetylene ax?, oxygen &, hydrogen «, and the other elements, the operations
e, %, £. .. had been sufficient for every requirement, hundreds of things had been made
with these tools. But if these statements were to be unreservedly accepted, these
operations would be inadequate to the purposes of the science; for the symbols of the
units of these substances, as expressed by the letters «, =, £, would be otnt, o'z, neces-
sitating in their construction the performance of an operation «*, of which they had no
experience whatever.

The unit «x?* is the unit of a substance which the Laputians had, but which we have
not. It goesin our language under the name of the radical of formic acid. % is the
symbol we assign to the unit of oxalic acid. I proceed to explain how the Laputians
dealt with this question.

“The accuracy of our experimentalists,” said they, “is beyond suspicion, and we
accept all the statements of fact made by them. But there is one point as to which it
is necessary to inquire. How do they know, as their objections imply, that the gases of
which they have taken the densities are really homogeneous gases? If at the tempe-
rature at which the experiment has been made these gases are really split in two, it is
not necessary to modify, in this sense, our views.

«“ Now similar impediments have frequently stood in the way of our theories. But
wherever it has been possible to look into the matter, as in the case of the pentachloride
of phosphorus, and even hydrated sulphuric acid, theory has come out triumphant.
This case is not strictly similar to those previously dealt with, but yet is not so dissimilar
as to lead us to look for a totally different account of the matter. That we should dis-
cover a new tool @* does not, we must confess, appear to us very likely. But that we
should be able to do more, with our-old tools «, %, & than we have hitherto done is by
no means out of the question. For the sake of argument let us assume, then, that the
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unit ¢x’¢*, our binoxide of acetylene, cannot exist as a gas, but is invariably resolved into
the two units ax% and #£ according to the equation

a8 = (axf + ).

“The weight of a unit of these mixed gases will be precisely that given by your
experiments, namely 145 ; and, moreover, it appears to us that we can explain all that
we, or you, know about the gas from this point of view.

“The two units jointly (and you know no more) are identical with a unit of acetylene
and a unit of oxygen; thus

' (ank +nE)=on®+ £

¢ Five units of hydrogen and two units of your gas are identical with and capable of

being resolved into two units of ¢« (marsh-gas) and two units of £ (water); thus

S0+ (arf 4 #8) =20+ 20l

which equation is identical with the sum of the two equations

2004 oext — oz 4ok,
ot xt=0oz+ak.

“If you ask us to explain the origin of the unit ax’%* (oxalic acid) by the oxidation
of the unit «#’2’, we may go further in the same direction. 'We have

(0 A nE) -8 = (B #E°).
“ Now the weight of a unit of the mixed gases wx£® (formic acid) and #&* is precisely
that which you have assigned to the unit ax%*, namely 22-5.
“It is easy to render an account, on this assumption, of the chemical properties of
this unit.
“Thus a unit of wx** (oxalic acid), together with a unit of water, is identical with the
unit ex&® (formic acid) and the unit «x£* (hydrated carbonic acid); thus

(g’ +#E") + af = onl’ - axf’.
¢ Again, three units of ax’’, together with two units of water, are identical with one
unit «2*%? and four units «x%*; thus
(ol 4 28) 4 208 = (wrf + )+ 4o
‘When the difficulty was pressed home upon the Laputian philosophers, that they were
mere dreamers, for that their chemists had worked with these gases for more than 100
years and had never detected the presence in them of any one of these imaginary exist-
ences z&, &, ax&, ax&’, they replied that while it was true that many interesting objects
lay upon the surface, so that anybody could see them, there were others not to be found
unless they were specially looked for, and that no chemist had ever yet looked for these
things. Also the difficulties in the way of their separation might be very great. The
densities of these gases would be so nearly the same that it would be hopeless to attempt

to separate them by diffusion. ~ As to the similarity, up to a certain point, of the chemical
K 2
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properties of these substances «x& and z£ which it was necessary to assume, this need be no
matter of surprise at all, for chemical substances (as everybody knew) existed in groups
characterized by such similarities. ~When it was further urged that it would be very odd
for such things to be found there and nowhere else in the world, they replied that on this
point they really were incompetent to judge, but that, at any rate, many things as
strange had more than once happened before, as in the case of the elements cesium,
rubidium, and lithium, three out-of-the-way things found all together in one mineral
water, and the mineral gadolinite, which presented many curious problems which no one
had yet fathomed. However, they added, “ We always measure out our belief according
to the evidence, and you are mistaken if you imagine us to be speaking over-confidently
on such a subject.”

Now we certainly cannot say that any Laputian chemists were placed in the position
or reasoned in the way we have described ; but we may say that if they had been placed
in this position and reasoned thus they would have reasoned correctly, and their reasoning
would have been fully justified by facts.

This argument is greatly strengthened by the numerous analogies connecting the
elements » and z. It is impracticable at this stage of our inquiries to bring these pro-
perly forward ; but the reader will hereafter have the conclusion forced upon him that the
element v is, so to say, but a less potent carbon. At any rate, pursuing this train of
thought, I have, as I must frankly confess, been brought to the opinion that by far the most
probable explanation to be given of the anomalies presented by the densities of the
binoxide and tetroxide of nitrogen is that the two gases which pass under this name are
not homogeneous gases at all, but in each case are constituted of two gases which, taken
together, are made up of the matter of oxygen and nitrogen, but which separately are
not so made up. This is undoubtedly a speculation ; but it is not a mere speculation,
but one founded upon reasonable grounds, which explains difficulties for which no other
explanation has ever been propounded, and suggests experiments by which it may be
verified or disproved. I proceed to another subject.

The analytical construction of the symbols of the units of matter can be regarded
only as preliminary to the consideration of a more complicated problem, namely, how
these units are transformed in the processes of chemical change. On this subject there
has been much speculation ; but it is not going beyond the truth to say that no general
theory of the nature of chemical events has yet been devised which will bear the
slightest criticism or which is even intelligible. This question also we shall here con-
sider from the analytical point of view afforded by the methods of this Calculus. “The
mental,” or, as it may be better termed, the * theoretical ” analysis of a complex pheno-
menon. into its elements is (it has been truly said) the first step of inductive inquiry*,
This theoretical analysis of any object of our study is effected when we replace that
thing by some system of things, the result of which, taken together, is equivalent to the

# J, 8, MitL, vol. i. ¢. vil. 1, p. 437 ; and also Contents to the same, p. xiv (ed. 1843).



SIR B. C. BRODIE ON THE CALCULUS OF CHEMICAL OPERATIONS. 63

result produced by the original object considered. Thus in mechanics the fundamental
theorem of the parallelogram of forces is an analytical method, by which it is demon-
strated that a force of a given magnitude operating in a given direction may always be
theoretically resolved, in an infinite variety of ways, into two or more forces of certain
specified magnitudes operating in certain specified directions, the result of which, taken
together, is in magnitude and direction identical with the result of the force thus analyzed.
Or, again, take the case of the analysis of vibratory movements. Defining the vibration
of a point as “motion in a curve which returns into itself with a velocity which is
always the same at the same point of the curve,” it may be demonstrated that any given
vibration of a point in a plane may be analyzed into two component rectilinear vibrations
in an infinite variety of ways, and that every vibration of a point, whether plane or not,
may be similarly resolved into three component rectilinear vibrations*.

Now precisely as forces are compounded of forces, as vibrations are compounded of
vibrations, so chemical events are compounded of chemical events; and from the point
of view of this Calculus the theoretical analysis of a chemical event consists in the
theoretical determination of a certain special system or systems of such events, the total
result of which, as regards the transformations of ponderable matter, is identical with
that of the original event.

‘When we say that a chemical event is thus constituted of other events into which it
may be resolved, the question arises, what view we take of the nature of such an event
to justify this statement, and of what kind of events it is to be regarded as made up.
The reply is given through the peculiar representation of a chemical event, afforded by
the method of this Calculus, by which this fundamental conception is suggested. This
representation is brought under our notice through the development of the method
itself when we express dynamical facts by it, and consider how we are to reason upon
them through its instrumentality. I shall therefore treat the subject in this natural
order, considering first the construction of the ¢ Organon” or Instrument of reasoning,
then the ideas suggested to us by that Instrument, and to which that Instrument is
applicable. 'When the nature of a chemical event has been thus defined so that we
clearly see what we have to do, the further inquiry lies before us of the theoretical
solution of the problem, namely, given a chemical event, how are we to determine the
events of which that event is compounded? This problem may in all cases be solved.
The solution is effected by means of a peculiar theorem, which occupies in theoretical
chemistry a position analogous to that held in theoretical mechanics by the theorem
of the parallelogram of forces. Lastly, I shall give examples of the application of this
theorem to actual events and things, when the chemist will have an opportunity of
estimating the bearing of this theory upon facts and its practical utility.

* ¢ Acoustics, Theoretical,” by W. F. Doxkiv. Oxford, 1870. Chapter ITII. On the Composition of Vibrations,
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Seerron I.

(1) Our total information as to the identical relation of ponderable matter is com-
prised in a system of equations constituted upon the principles explained in Part I.
Section VI. 'When we are adequately impressed with this important truth a chemical
equation becomes a study of transcendent interest, and we are led to consider in’ a new
light the purport and significance of its algebraical properties. Noweven the science of
Algebra itself has been defined as consisting but in the ¢“analysis of equations,” from
which new truths are continually in process of evolution, and to the study of which all
other objects of the science may be regarded but as accessory and subordinate. The
same is emphatically true of the algebra of chemistry; and the most essential and cha-
racteristic feature of the Chemical Calculus, by which it is fundamentally discriminated
from other modes of considering the science, is that in it we do not, as in the atomic
theory, reason by the intervention of material images, but, setting aside all preconceived
ideas, we base our arguments upon the equations themselves, and elicit from them, by
the application of algebraical processes, the laws and principles which they implicitly
contain. '

Now I have been very unwilling to introduce irrelevant matter into a complicated
subject ; and in the first part of this Memoir, at the risk of some misapprehension, I
have entirely confined myself to the consideration of questions the determination of
which was essential to the end immediately in view, the “ construction,” namely, ¢ of
chemical symbols.” But before proceeding further with the subject, it is necessary to
recur to the fundamental principles of the method, and to discuss a question referred to
in Part I. (Section IV. (5)), and there postponed, namely, under what conditions the
operations of algebraical multiplication and division may be performed upon chemical
equations.

The nature of such an equation, and the principles on which such equations are to be
constructed, have been fully explained (Part I. Section V.), and it is only necessary to
remind the reader that by a chemical equation is here meant an equation of the form

v=m¢ +m'¢,+m'g,4m"@,+ ... =0,
where
¢ =aPbhem. ..,

¢=a’bc”. ..,

Gy=a"b"cr. . .,
@, ¢y, @, . . - being the symbols of the units of matter, a, 4, ¢. .. the symbols of simple
weights (Section I. (8)), and p, p, ... ¢, ¢y, @o+ - - 75 715 75 . . . POsitive integers, and m, m/,

m',m"... numerical symbols, positive or negative, satisfying the conditions afforded by
the system of indeterminate equations :
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mp +m'q +m''r + =0,
mp+m/ g +m" r, 4 =0,

mp,+m'q,m'"r, 4 =0,

It will be sufficient to consider the above question in relation to the fundamental
equation (Part I. Section IV. (1))

gy=x+y, . . . . . . . . . . . .1

which affords the simplest example of a chemical equation. If we proceed to deal with
this equation with the same freedom as with a numerical equation, and to multiply each
member of this equation, not by a numerical symbol m (which is permissible), but by a

chemical symbol v, we have
vy=ver4vy, . . . . . . . . . .. (2

a conclusion which is obviously false; for, interpreting the equation consistently with
the principles on which these symbols are constructed, we are informed by it that the
unit of matter symbolized as vxy is identical, as regards « weight ” or matter, with the
aggregate of the two units symbolized as vx and vy; and further, if we apply to equa-
tion (2) the principle laid down in equation (1), we have vay=v+xy, vo=v-+4=, vy=v+7,
and, as a final conclusion, v==2v. Again, taking the equation 4% = -2y, which is true,
dividing both members of the equation by the chemical symbol #, we are led to an

absurd conclusion, namely, that
e N €)

that is to say, that the matter symbolized as &y is always identical with the matter of

an empty unit of space, symbolized as 1, and the matter symbolized as 4. But it is only
necessary to observe that the equations (2) and (3) to which we are thus led,

VXY =24y,
ay=1+y,

are not chemical equations at all, for they do not satisfy the fundamental conditions
afforded by the system of indeterminate equations previously referred to,

mp+mg+m'r+...0,

In short, if we inconsiderately deal with these equations without reference to the
principles on which they have been constructed, precisely as though they were numerical
equations, we are not only involved in a tissue of absurdities and contradictions, but are
compelled to introduce into the system of chemical equations, equations which do not
belong to that system at all, and which could never arise from the expression by means
of equations of chemical facts.
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It is impossible for a false or absurd result to be the consequence of the application
to a true statement of a correct principle of reasoning ; and we are thus led to the sin-
gular conclusion that, although up to a certain point the analogy is perfect between
the properties of chemical and numerical symbols, here this analogy terminates and
ceases to be a correct guide ; and we are apparently forced to admit that in the treat-
ment of chemical equations no processeé exist equivalent to the algebraical processes of
multiplication and division. Now, first, we may observe that such an imperfect calculus
might really exist, logically correct, but with limited methods; for there is nothing
either in the nature of symbolical algebra or in the distributive and commutative laws,

2(y+z)=ay+az,
Y=Y,
through which the symbols of chemical operations are related to the symbols of numbers
(Part L. Section II. (4) and (5)), to necessitate the application of these processes to equa-
tions. Indeed in the actual applications of algebra perfectly similar restrictions are
found to exist. The symbols of certain operations do not satisfy the commutative law,
and we cannot infer from the equation

vry=vr+40y
that (whatever be the interpretation of the symbols)

xy=xy.
Thus, for example, in the algebra of logic, while the operation of algebraical multiplica-
tion, as applied to equations, is permissible, the performance of the operation of
division upon logical equations is absolutely prohibited. ~Thus we cannot infer from
the logical equation
2Y=zx

that y=a, which would be tantamount to asserting that because those members of a
class ¥ which possess a certain property z are identical with those members of a class &
which possess the same property, therefore the class y is identical with the class «
[Boowg, ¢ Laws of Thought,” p. 367, an inference obviously erroneous. But even in the
algebra of quantity we cannot always perform the operation of division upon equations
where such division is formally possible. From the equation 2(2—a)=0 we cannot
infer that 2=0. The operation of division can ohly be thus performed by the exclu-
sion of certain symbols upon the assumption that 0 and ¢ are not values of the symbol
by which we divide. Hence the circumstance that such processes are inadmissible
does not detract in any degree from the truth, reality, or logical perfection of an
algebraical system. Nevertheless it may be admitted with perfect consistency that a
calculus from which such important processes were entirely excluded, and in which the
processes of addition and subtraction were the only processes practically available,
would be of very limited utility, and could only be regarded as a rudimentary and
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imperfect system, presenting but a remote resemblance to the extended methods of
arithmetical algebra. Such a system is really (although not explicitly and avowedly)
presented to us in our actual chemical notation. No algebraical operation has ever as
yet been properly performed upon chemical symbols except the operations of addition
and subtraction. The great convenience, the brevity and suggestiveness of the notation
has led to the universal adoption of the apposition of letters as the expression of
what is termed chemical combination. Thus HHO, H,O0, H?O (for each of these
expressions is in use) represent to us the molecule of water as discriminated from the
aggregate of hydrogen and oxygen, H4-H-4O. But these expressions are employed
under protest and are algebraically lifeless, for no use is made of them ; and, as far as
any definite processes of reasoning are concerned in which such symbols are engaged,
the molecule of water might with equal advantage have been expressed by the letter A.

(2) We shall now proceed to consider how chemical equations through the application
of the principles of this Calculus may be brought into a form adapted to algebraical
treatment.

First, it is to be observed that although the processes equivalent to multiplication
and division are not universally applicable to chemical equations, yet neither, on the
~ other hand, is it true that these processes are universally inapplicable. There are certain
cases in which we may either multiply or divide a chemical equation by a chemical
symbol, and the result shall be both interpretable and true. These cases are easily
discriminated. Let us take the general equation given, Part I. Section V. (10),

o=m¢4+m'¢,+m"¢;+m"¢;+ ... =0,

and multiply the equation by the factor ¢!, where ¢ is a chemical symbol and ¢ a number,
we have then

me'e -Em’e’cp,+m"e‘<p2+m"'e‘<p3+ coo=0;

and then, in addition to the indeterminate equation

mp +m'g+m'r4 =0

we have another equation to be satisfied, namely
mt+m't -+m"t +m"'t + =0,
whence, by dividing by ¢, ‘
m+ml+mﬂ+mlll+ :O.

Now if this equation be true, we are led into no error by effecting the multiplication
in question. That is to say, we are justified in multiplying a chemical equation by any
chemical factor of the form ¢‘ and by any product of such factors, if the sum of the
numerical coefficients in that equation be equal to zero, but not otherwise.

MDCCCLXXVII. L



68 SIR B. C. BRODIE ON THE CALCULUS OF CHEMICAL OPERATIONS.

Similarly, in the above equation, let ¢, ¢,, @, @, . . . have a common measure a’, so
that p=t+4s, q=t+k r=t+i0...

(D _— t+sbplcp2 R t+a®’
<P1= t+kbq,0q2 V. = t+k@l)
GC=a b . .. =at'o,,

.5
then
v=maHO+mad e, +m'd e, . . .

Now if we divide this equation by &', we have
ma'®-4m'ae, +m'"d'0,+ ... =0;
and if this equation be trué,
ms-+m'k4+m'l+ ... =0.

But we have from the original equation

m(t+s)+m'(t+k)+m"(t+)+ . .. =0;
whence, subtracting,
m—m F+m+m" 4 ... =0.

That is to say, we are justified in dividing a chemical equation by any common
measure of the symbols by which the equation is expressed of the form «f if the sum of
the numerical coefficients in that equation be equal to zero, but not otherwise. An
equation in which this condition is satisfied will be termed a “mnormal” chemical
equation, being an equation to which the rules of algebra are applicable. An equation
in which this condition is not satisfied will be termed an *abnormal” chemical equa-
tion, being an equation to which these rules cannot be applied.

If we open a chemical treatise and examine the equations expressive of actual results,
we cannot fail to be impressed by the circumstance that numerous equations satisfy
this condition and are of the “normal” form. For example,

Zoy=atoy’, . . . . . . . o0 L 00D
Py e+ 30aE=3ay+a%, . . . . . . . . .. (2)
D e ) S <o (3)
20+ ot =20 F 0%, . . . . . ... (4)
B A T o N < ()
P 200 =B Yok tas®, . . . . . . . . . (6)
2%+ 1lav=o'2’0 460k +bac®, . . . . . . . . (7)
ot =0baktar®. . . . . . . . . . .. (8)

These equations have been selected at random. They indicate to us the following
facts :—
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(1) Two units of hydrochloric acid are identical with a unit of hydrogen and a
unit of chlorine.

(2) A unit of oxychloride of phosphorus and three units of water are identical

- with three units of hydrochloric acid and a unit of phosphoric acid.

(3) A unit of alcohol and a unit of oxygen are identical with a unit of water and
a unit of acetic acid. '

(4) Two units of ammonia and a unit of oxalic ether are identical with two units
of alcohol and a unit of oxamide.

(5) A unit of glycerine and three units of acetic acid are identical with three units
of water and one unit of triacetine.

(6) A unit of lactic acid and two units of hydriodic acid are identical with a unit
of propionic acid, a unit of water, and a unit of iodine.

(7) A unit of mannite and eleven units of hydriodic acid are identical with a unit
of iodide of hexyl, six units of water, and five units of iodine.

(8) Five units of hydrogen and a unit of pentoxide of iodine are identical with
five units of water and a unit of iodine. v ‘

Such examples might be greatly multiplied. Equations possessing this peculiar
property are not due to accident, but to the simplicity of natural laws. In the chemical
metamorphoses of which they express the results there is no change of gaseous volume.

It would be by no means difficult thus to make a system of carefully selected equations
to which, as satisfying the condition given above, the processes of algebra would be truly
applicable. That such a system should be possible, that a system of “normal” equa-
tions, subordinate to algebraical laws, should actually be found in the midst, so to say, of
an abnormal system, is undoubtedly a most striking and suggestive fact. But neverthe-
less, so far as any realization of the objects of a calculus are concerned, this circumstance,
if taken alone, is totally inoperative. The result of constituting such a system would be
to divide chemical equations into two classes—a class with which we could really deal alge-
braically, and a class with which we could not so deal ; and corresponding to these classes
we should have, as will presently be seen, two systems of phenomena—a system which.
we could realize, study, and comprehend, and a second system absolutely unintelligible to
us. These anomalies, however, may be completely removed by a mathematical trans-
formation of the equation, to which I must now request the attention of the reader.

(8) It has been remarked (I. Sec. IV. 3), where the meaning and properties of the
chemical symbol 1 are under discussion, that any number of numerical symbols 0,1,2, 3 -
may be added to a chemical function without affecting the interpretation of that function
as regards “ weight.” This may be inferred from the fundamental equation ay=g-y,
which equation becomes if y=1, =a+41. It is also an immediate consequence of the
interpretation assigned in this Calculus to that symbol, which regarded as a symbol of
“weight” (being the symbol of an empty unit of space) is the symbol of “no weight,”
and regarded as the symbol of an operation is the symbol of (if we may so say) « taking
the unit of space as it is ” without performing upon it any operation resulting in “weight

L2
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or matter. So that, as regards ©“ weight ” or matter, our conception of the “ weight”” or
matter of a unit of hydrogen symbolized as « is precisely the same thing as, and cannot
be discriminated from, our conception of the ¢ weight” or matter of a unit of hydrogen
and the “ weight ” or matter of an empty unit of space. Hence as long as “ weight”
or matter is the only subject under our consideration, we may assert with perfeet truth
that a=a-} 1, this assertion being strictly analogous to the arithmetical assertion that
1=1+0. In this peculiar property of the chemical symbol 1 is supplied to us the
means of remedying the imperfection of chemical equations and of so changing their
form, without affecting their interpretation, as to bring these equations within the
recognized domain of algebra. For if in any chemical equation v=0 the sum of the
numerical coefficients be not equal to zero, it is in our power to make that sum equal
to zero, by the addition to the function » of the necessary number of numerical symbols
affected by the proper sign; and when this transformation is effected, we may operate
upon the equation with confidence and security by every process of algebra—the result
being on the one hand greatly to enlarge our powers, and on the other to prohibit
inadmissible processes.
Take for example the equation discussed, Part I. Sec. VIL. (8),

20v=38a4ow® . . . + .« + « .+ o . . (1)
This equation is ¢abnormal.” We should be tempted from the form of the equation
to consider the result of dividing by the symbol «, which leads to an equation

2ev=238-17,
an equation external to the system of chemical equations, the conditions previously
referred to not being satisfied in that equation. But this equation, when rendered
“normal ” on the principles just laid down, is

24-20=380+w? . . . . . . . . . . . (2)

Now this equation, as regards any assertion made by it in relation to “weight,” has
precisely the same meaning as the equation from which it is derived ; for it is perfectly
immaterial whether we say that two units of ammonia are identical as regards * weight”
with three units of hydrogen and one unit of nitrogen, or whether we say that two units
of ammonia and two “ units of space” are thus identical with three units of hydrogen
and one unit of nitrogen. But as regards their algebraical properties the equations are
fundamentally different ; for on the latter equation (2) the performance of the operation
of division by the symbol « is impossible, and the result of the transformation of the
equation is absolutely to prohibit this operation. But, on the other hand, we may now
multiply this equation by any chemical symbol, and the resulting equation will necessarily
be interpretable and a proper subject for our consideration. As, for example, if we
multiply both sides of the equation by the symbol &, the equation becomes

28+ 20M8 =38 + a8,

an equation in which the requisite conditions are satisfied.
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The following examples will sufficiently illustrate the way in which this principle is
to be applied for the construction of “normal ” equations :—

204-8=2a%, . . e e e e e e e e (1)
d0p=06a+o', . . . . . . . . . . . (2)
Sta?=day:t . . . . . .« . . . . . (3)

e taF=B3, . . . . . . . . . .. (4)
Y N )

D A ()]
e N A O

'’y =20k4o%,. . . . . . . . . . . (8

v+ 20=20'%%, . . . . . . . . . . . (9
A s R ¢ (1))
o+ 20°0x° =200+ et Py, . . . . . . (11)
34207y =a'Vx"+30k, . . . . . . . . . .(12)
20084+ 38=2ak+ 2’2", . . . . . . . . . .(13)
oV’ xE+ o+ By =B o’ + bay, . . . . . . . . . (14

Vx4 208 =20 428 +3ak. . . . . . . . . .(15)

The above equations are strictly true, and are the records of actual observations.
They are thus to be interpreted :—

(1) Two units of hydrogen and one unit of oxygen are identical with two units of
water.

(2) Four units of phosphide of hydrogen are identical with six units of hydrogen
and a unit of phosphorus.

(8) A unit of mercury and a unit of chlorine are identical with a unit of protochlo-
ride of mercury.

(4) A unit of ethylene and a unit of bromine are identical with a unit of bromide
of ethylene.

(5) A unit of oxalic acid is identical with a unit of formic acid and a unit of car-
bonic acid. :

(6) A unit of water and a unit of carbonic oxide are identical with a unit of
formic acid. '

(7) A unit of acetic acid is identical with a unit of marsh-gas and a unit of car-
bonic acid.

(8) A unit of acetate of ammonia is identical with two units of water and a unit of
aceto-nitrile.

(9) A unit of aceto-nitrile and two units of hydrogen are identical with two units
of ethylamine.



72 SIR B. C. BRODIE ON THE CALCULUS OF CHEMICAL OPERATIONS.

(10) A unit of monochloracetic acid and two units of ammonia are identical with a
unit of chloride of ammonium and a unit of glycocoll.

(11) A unit of succinic acid and two units of pentachloride of phosphorus are
identical with two units of oxychloride of phosphorus and two units of
hydrochloric acid and a unit of chloride of succinyl.

(12) Three units of benzoic aldehyde and two units of ammonia are identical with
a unit of hydrobenzamide and three units of water.

(13) Two units of butyric acid and three units of oxygen are identical with two units
of water and two units of succinic acid.

(14) A unit of urea and a unit of water and three units of chlorine are identical
with a unit of carbonic acid, a unit of nitrogen, and six units of hydro-
chloric acid.

(15) A unit of urea and two units of nitrous acid are identical with two units of
nitrogen, a unit of carbonic acid, and three units of water.

These equations, although true, are ‘abnormal,” and cannot be dealt with alge-
braically.
In the normal form they appear as follows :—

204+8=25+1, . . . . . o . . . 0 0 (1)
S+4g=6ate’e', . . . . . . . . o o . (2)
dtoy’=day’+1, . . . . . . . . . 00 (3)
o=+, . . . o o o o oo (4)

1+ ot =anxf 4222, Y )
dbtxt=axg+1, . . . . . . . . . . . (6)
+oa’B=a’2+8, . . . . o o . . 0 . . (7)
24a' v =20+, . . . . . o . o . . (8)
orv+20=2a"2v+1, . . . . . . . . . . . (9
W+ 20 v=cvy+ a1, . 0 o . . 0 . L (10)

2 —f—o&?’z"%‘*—]— 2000 " =20 5+ 20y +’'E Y, . . . . . . (11)
e+ 20ty =V + 841, . . . . o o . o L (12)

o' B4 38 =24 207281, . . . . . . . . . (13)
3+a3!/2z§—|—oo§—|—3ax =284’ +6oy, . . . . . . . . .(14)
oVl 2008 =200 + 25 + Bk, e e e oo (1)

In the preceding examples the equations are rendered “normal” by the arbitrary
application of a process, proved to be permissible according to the principles of the
method—this process depending upon the circumstances that the interpretation of any
chemical function 13 not (as regards “weight” or matter) affected by the addition to it
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or subtraction from it of the symbol 1. The application of this principle to the general
equation

y=a+y . . . . . < . . < . (1)
leads to the “normal ” form of that equation,
I4zy=a4y.. . . . . « . . . . (2

(4) We may also arrive at this last equation through the following considerations,
which involve some important principles which will hereafter find a further application.
Let A, 2,y be chemical symbols, and let

Azy+ Aab=Axb+Aya;
then, from equation (1),
Azy=A+x+y, Arva=A+a+a,
‘ Aab=A+a-0, Ayb=A+y+0.
Now putting
' v=Azy+Aab—Arb— Aya,
and substituting for A2y, Aab, Aza, Ayb the above values,

v=0.
But we have, from the distributive property of chemical symbols (established in
I. Sec. II. 6), )
v=A(z—a)(y—=b), . . . . . . . . . . (D

whence
Alx—a)(y—0)=0;
that is to say, the product of any two chemical factors of the forms x—a, y—5 is neces-
sarily equal to nothing ; and the further application of the same reasoning leads to the
conclusion that the continued product of any number (not less than two) of factors of
this kind is also nothing ; that is,
A@—a)(y—=b)(z—c)...=0. . . . . ... . . (2
Now, since these equations are always true, they are true when A, @, and b are
respectively put equal to 1, whence
(2=1)(y—1)=0
and
14 2y=2+ty,
which is the equation referred to. -
Now this equation, regarded as a numerical equation, is satisfied by the values
x=1,y=1; and since this property is perfectly general, and every symbol of a chemical
operation satisfies this condition, every chemical equation must necessarily be true when
the prime factors by which it is expressed are severally or collectively put equal to 1.
(8) Now if this principle be applied to an abnormal equation, we are led to the
assertion (Part I. Sec. IV. (3))

1(1)=2(1)=3(1). .. =n(1)=0;

or, suppressing the chemical symbol (1), 1=2=3... =n=0, which assertion is indeed
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not inconsistent with the use and interpretation of the chemical symbol (1), but is
entirely at variance with the numerical interpretation of that symbol, so that the greatest
possible divergence is apparently exhibited between the use which is made in this Cal-
culus of that symbol and its arithmetical signification®*. But if this same substitution
be effected in a ““normal” equation the anomaly disappears. No divergence is found
between the arithmetical and chemical use of the symbol 1, and the equation is true both
as an arithmetical and chemical equation; for from the very principle of its construc-
tion every ‘‘normal” equation must necessarily vanish when the prime factors in that
equation are severally put equal to 1. So that the effect of making this substitution is
simply to lead us to the assertion that 0=0, which is an arithmetical as well as chemical
truth ; that is to say, every “normal” equation is true, not only as a “ chemical equa-
tion,” but also as an arithmetical equation for the only arithmetical value which the
symbols can possibly assume, namely the value 1; and when this value is assigned to
every prime factor by which the equation is expressed, the chemical equation is turned
into an arithmetical equation, which is both interpretable and true. The reason of this
is that the chemical symbol 1 is absolutely identical, as regards its algebraical properties,
with the arithmetical symbol 1, although having a totally different interpretation from
that symbol, a point which has been fully demonstrated and discussed in Part I.
Sec. I11., and also that a “normal” equation is subject to precisely the same rules of
algebraical treatment as an arithmetical equation, as has been just demonstrated.

The real and valid character of the preceding reasoning will be evident from the fol-
lowing example, which illustrates the way in which a chemical function passes into a
numerical function when chemical symbols assume the numerical value 1, and the infer-
ences which may be thus drawn.

(6) In the first part of this memoir the symbols of the units of chemical substances
are determined by the aid of certain indeterminate numerical equations, at which we
arrive by the'direct application to chemical equations of the fundamental properties of
chemical symbols so frequently referred to ay=x+y (I. Sec. VIL.).

Take, for example, the equation given, Part I. Sec. VIIL. (8),

20™y™ = 3o |- o™ ;
from this equation we are able immediately to infer that
("™ P =06’ "™,
whence
2m=3+n,  2m=mn,

* The apparent paradox involved in this assertion may be removed by assigning a special symbol, ¢?, to the
unit of space, p being a positive integer. But on investigating the properties of this symbol we should soon
find that ¢=¢?, whatever be the value of p (the value 0 included), and that, as we might always replace alge-
braically the symbol ¢ by the symbol (1), we were really dealing with the symbol 1 under another name.
Such paradoxes, however, have no significance when the meaning of the expressions employed is properly under-
stood. Thus Dz Morean, in his ¢ Double Algebra’ (ed. 1849, p. 114), speaking of the term addition as there

employed by him, says, “ Nor is there, in one sense, the slightest objection to saying that 12 and 12 make 10,”
an assertion quite as paradoxical (to say the least) as any here made.
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But we may also proceed thus. Reducing the above equation to the “normal ” form,
we have : :
24 20m™ = Sor - at™y™,
Putting =1, we have

24+ 2¢"=3x-+a",

whence

a(2an"l—arTi—1)

a—1

Since this equation is always true, it is true where a=1. But the numerical value
of the left-hand member of this equation, when «=1, is 2(m—1)~—(n—1); whence we
have

2m—n—1 :2,
and, as before,
2m=3+n;
again, putting a=1; we have
2420 =34y
and o
%f;lfl=—1-

. Y eyt . My—n
But the numerical value of P when v=1,1s v‘m—l ; whence we have, as before,
i - 1

2m,=mn,.

We thus arrive by the consideration of the numerical value of chemical symbols at
the results previously inferred by an apparently different process. But the truth is
that the very same principles are really employed in both methods, which differ only in
the stage at which those principles are introduced.

The process here employed for the reduction of a chemical equation to the *normal 7
form, with the view of rendering that equation amenable to algebraical treatment, is
strictly in conformity with the spirit of algebraical methods. The ordinary artifice for
the solution of a quadratic equation is based upon a somewhat similar principle. A
particular form of the symbol 0 is there added to the function, by which its value and
interpretation are not affected, but which enables us to express the function by means
of factors. But an illustration, perhaps still more in point, is the process familiar to
mathematicians, by which an equation is rendered “homogeneous,” which is effected by
the introduction of an arbitrary factor with which we work precisely as with one of
the real factors of the symbols which appear in the equation, and which, at the
conclusion of the algebraical operations, to which the equation is submitted, is put equal
to 1 and suppressed.

(7) It is, however, important to notice that although it is strictly true that if the
MDCCCLXXVIL M
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assertion made in the symbol = be limited to identity of ¢ weight,” 2=2-+1; so that,
as regards this identity, the assertion made in the “normal ” equation

14208=2e+£& . . . . . . . . . (1)
is the very same assertion as that made in the ¢ abnormal ” equation
2e5=2e+&%. . . . . . . . . . . (2

it being perfectly immaterial, as before remarked, whether we say that the ¢weight”
of a unit of space and the “weight” of two units of water is identical with the ¢ weight”
of two units of hydrogen and a unit of oxygen, or whether we simply say that the
“weight ” of two units of water is identical with the ¢ vs’reightf” of two units of hydrogen
and a unit of oxygen, just as it is immaterial whether we say that three and two are
identical with five, or that nothing and three and two are identical with five, the
selection among such expressions being dictated merely by algebraical convenience. Yet
nevertheless a very real and appreciable distinction may be drawn between the two
assertions, which from another aspect have by no means a strictly equivalent meaning.
The former equation (1) necessarily includes every assertion which is made in the
latter; but the latter (2) does not include every assertion which is made in the former.
For if we extend our notion of identity to identity of *space” as well as of “matter,”
it is open to us to assign an interpretation to the symbol of identity = in equation
(1) which cannot be assigned to that symbol in equation (2). A unit of space and two
units of water are identical, both as regards “weight” and as regards the “space”
occupied by that ¢ weight,” with two units of hydrogen and a unit of oxygen. But it
is not true that two units of water are identical, both as regards “weight” and as
occupied by that ¢ weight,” with two units of hydrogen and a

b

regards the “space’
unit of oxygen; for the space occupied by two units of water is 2000 cub. centims.,
but the space occupied by two units of hydrogen and a unit of oxygen is 3000 cub.
centims. [I. Sec. I. (10, 11)]. Thence, in the reduction of a chemical equation to the
“mnormal ” form, we not only render the equation algebraically correct, but also extend
and complete the idea expressed in the equation.

Now this conception of a perfect and complete identity, both as regards “space’
and matter, cannot arise so long as we confine our inquiries to the composition of
“the units of ponderable matter, as considered in the first part of this Calculus, but
has its origin exclusively in those dynamical inquiries which relate to the changes

b

of matter. For this there is an obvious reason. In investigating the laws of gaseous
combinations, which are the special objects of this method, a most essential point to be
considered, whether from the point of view of the chemist or of the physical philoso-
pher, is the relation of “matter” to “space;” and in the adequate consideration of a
chemical change we are bound to take cognizance not only of changes in the compo-
sition of the ‘“units of ponderable matter,” but also of changes in the “bulk ” of matter,
and to find the means of entering these changes in our equations. The contrivance



SIR B. C. BRODIE ON THE CALCULUS OF CHEMICAL OPERATIONS. 77

by which a chemical equation is rendered “mnormal” is a method of effecting this
entry. ’

(8) According to the reasoning previously pursued we arrive at the numerical equation
2m=3+n, 2m=mn, by successively assigning to the chemical symbols «,» the value 1,
a value common to numerical and chemical symbols; but this method is but an
illustration of a wider principle. We may lay down the rule, that if throughout a
chemical equation we substitute the symbol of any one “simple weight” for any other
“simple weight,” that equation will still be true. This statement does not mean that
the symbols of all simple weights have the same meaning, and that it is indifferent
which we employ, or that the assertion made in the equation thus modified is the same
as the assertion made in the original equation, but that if the original equation be true,
the new assertion made in the equation thus modified is also true. 'We may compare
the two members of a chemical equation to the two pans of a balance which is kept in
equilibrium by a system of weights of 1 ounce, 2 ounces, 3 ounces, 1 lb., 2 1bs., 3 1bs.,
and the like in each pan, the same number of weights of each kind being in the two
pans respectively. The equilibrium of the balance is not only unaffected by any change
in the distribution (or arrangement) of the weights in each pan, but is also unaffected
by the simultaneous removal from each pan of all the weights of the same kind, or by
substituting weights weighing 11b. for the weights weighing 1 ounce, or any analogous
substitutions. At first sight it would appear that the chemical symbol 1 should be
excluded from the operation of this rule; for it is not the case that in the normal
equation

14+ay=a+y,

where the symbol 1 appears we may write & (although where & appears we may write 1),
and that the resulting equation should still be true. The reply to this difficultyis that,
in order to arrive at the above equation, we have tacitly assumed the truth of the
equation 1"=1, and that the equation in the above form is really imperfect. If,
however, we render the equation homogeneous, remembering that =?=1, whatever be
the value of p, we have for the complete equation

@’ + 2y =%+ yw,
to which the rule is applicable.

Szcrron IL—ON SIMPLE AND COMPOUND EVENTS.

(1) Through the. transformation of equations, described in the last section, the
Chemical Calculus is finally constituted as a symbolical method adapted to algebraical
reasoning. I shall now proceed to consider, in the light of these principles, the nature
of the fundamental conceptions through which we are to reason as to the phenomena
of chemical change. Here, again, pursuing the method employed in the first part of
this Calculus, I shall endeavour to assign a precise meaning to the terms employed, and
accurately to define those conceptions. But in this case the notions themselves are so

M 2
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mixed up with the symbolical forms in which they originate, that it would be inexpedient
and indeed almost impracticable, to attempt to explain these conceptions except in
reference to these forms, and these definitions will be given as the occasion arises.

A chemical equation has been hitherto regarded in this Calculus only as an assertion
in regard to the identity of certain units of ponderable matter. But there is another
and equally just point of view from which such an equation may be considered, namely,
as the record of a “chemical event” or “ metamorphosis;” and a chemical equation of
the form %=0 may correctly be termed the symbol of such an event. For from the
very principle on which such equations are constructed, the assertion that A is identical
as regards “weight” with B necessarily implies that A has been chemically converted
into B, or that B has been chemically converted into A, for otherwise we could not
possibly have been aware of this identity, our only knowledge of the identical
relation of matter being derived, as has already been fully explained (I. Sec. VI.), from
the chemical transmutation of matter. And when we write down such equations as
those given in the last section (Sec. I. (2)(3)), we are recording the various events of
which we have become cognizant in the history of chemical metamorphosis.

The term “ chemical event” will be here employed to denote the occurrence of any
change whatever in the chemical composition of the units of matter of which the result
is or may be expressed in an equation; and precisely as we speak of a *chemical
operation” as the “simple weight” which is the result of that operation, so also may
we refer to a ¢ chemical equation” as the  chemical event” of which it symbolizes the
result, and deal with it as representing the event itself. Such an event is here repre-
sented to us as in the strictest sense a “metamorphosis” or “change of form;” not
that we venture to offer any material image, picture, or physical representation of that
as yet inscrutable phenomenon, but we speak of it in this language because that change is
indicated to us and adequately expressed by changes in the arrangement and structure
of these symbolic forms, through which it is brought under the cognizance of our intel-
ligence.

(2) Now just as the algebraical sum or aggregate (as we shall term it) of two or more
equations itself constitutes an equation, so every collection or aggregate of chemical
events constitutes an event. Fhis is true whether those events are considered as
occurring successively or simultaneously. An event of which the result is expressed by
the algebraical sum of two or more equations will be termed *an aggregate,” and will be
spoken of as ‘‘the aggregate”” of those two or more events expressed in those equations,
and will be said to be * constituted ” of those events. We are hence led to discriminate
chemical events as “simple” and  compound ” events.

Definition.—A. “compound” event is an event which is regarded in the system
of events under our consideration, whatever that may be, as * constituted” of two or
more events, and “a simple event” is an event which in that system is not so regarded.
But these terms necessarily have reference to some special mode of regarding and
considering the phenomena, and apart from such considerations the terms are unmeaning ;
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for there is no property of a chemical phenomenon which compels us to regard it either
from the one or the other point of view. In thisrespect the use made of the terms ¢ simple
event” and “compound event” is analogous to the use made in the first part of this
memoir of the terms ¢ simple weight ”” and ¢ compound weight,” a division coextensive
with that into ¢ distributed ” and “ undistributed ” weights (I. Sec. 1.7, 8, 12). For not
only are these terms dependent upon one another, a “simple weight ” being defined as a
“weight ” which is not “ compound,” but they also have reference to some special system
of phenomena considered from a definite point of view—a ¢ distributed ” weight being a
weight which in such a system of events is resolved into two or more weights, or made
up from such weights, and an ¢ undistributed ” weight being a weight which in the same
system of events is not so resolved or so made up,” there being nothing whatever in the
properties of matter, apart from such considerations, to justify the use and application
of such terms at all. Ience a ¢ weight” which from one point of view and in one
system of events is regarded as a “compound ” and ¢ distributed ” weight, from another
point of view and in another system of events may, with equal reason, be regarded as a
“simple” or ‘undistributed ” weight. These conceptions have their origin in the con-
sideration of the chemical properties of matter, but may be transferred without any
fundamental alteration of meaning from matter to phenomena, or “the changes of
matter "—the symbol of a compound event being the symbol of one event which is
“an aggregate” or collection of some other events, precisely as the symbol of the unit
of hydrochloric acid oy is the symbol of one operation which is a combination of the
two operations @ and y. As it is essential that a correct appreciation should be made of
what is here meant by a compound event, I shall proceed to give some examples of such
events. |

Example (1).—Let us suppose ourselves to be informed that a unit of binoxide of
hydrogen is identical with a unit of hydrogen and a unit of oxygen, that is to say, that

14+eff=a+&5. . . . . . . . . . . .1

this information could only be derived from the circumstance that the event of the
transformation of a unit of binoxide of hydrogen into a unit of hydrogen and a unit of
oxygen had, in some system of chemical metamorphoses, actually occurred, and the
above equation informs us of all the circumstances of that event (as regards the identities
of matter and space) which the event involves. Now if no other information than this,
either real or theoretical, be laid before us, we can form but one judgment as to that
event, namely, that it is a “simple event;” for we are supplied with no information
which enables us to regard it as a ¢ compound event,” and a “ simple event” is an event
which, in relation to our information, is no¢z compound. But let us also be informed of
the two following circumstances, namely, that two units of binoxide of hydrogen are
identical with two units of water and a unit of oxygen, and also that two units of water
are identical with two units of hydrogen and a unit of oxygen. The events whence this
information was derived are thus recorded :—
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14208 =20E+E, .« . . . ... (2)

1420 =2a46. . . . . . . . . . . . (3)
It is now in our power to take a different view of the nature of the event,

1+0f=at+& . . . . . . . . . . .0 (1)

For if we add together the right-hand and left-hand members of equations (2) and (3)
and divide the result by 2, we constitute equation (1); that is to say, this event (1)
may be regarded as a compound event, which is the aggregate of the two events,

%4‘“&2=0€E+‘%52,
b =t 38

for not only is equation (1) an algebraical inference from equations (2) and (3), but it
is actually in our power to effect the chemical transformation of a unit of binoxide of
hydrogen into a unit of hydrogen and a unit of oxygen by effecting two several trans-
formations, namely, the transformation of a unit of binoxide of hydrogen into a unit of
water and half a unit of oxygen, and also the transformation of a unit of water into a
unit of hydrogen and half a unit of oxygen; and the result of these events (whether
they occur successively or simultaneously, or in whatever order) is the transformation of
a unit of binoxide of hydrogen into a unit of hydrogen and a unit of oxygen, and no
other occurrence or event—it being quite immaterial as regards the result whether we
first transform a unit of binoxide of hydrogen into a unit of water and half a unit of
oxygen, and then take that unit of water and resolve it into a unit of hydrogen and half
a unit of oxygen, or whether we begin by resolving a unit of water into a unit of
hydrogen and half a unit of oxygen, and then resolve a unit of binoxide of hydrogen
into a unit of water and half a unit of oxygen, or whether the two events occur together.
In each case the final result is precisely the same, namely, the conversion of a unit of
binoxide of hydrogen into a unit of hydrogen and a unit of oxygen, and nothing else.
Now as the equation

1+aff=a+& . .’. I (1)

is an inference which may be arrived at in many ways and from many systems of equa-
tions, so may we regard this event as * constituted” of other “events” in many ways.
Thus, for example, a unit of chlorine and a unit of binoxide of hydrogen are identical
with two units of hydrochloric acid and a unit of oxygen, and also two units of hydro-
chloric acid are identical with a unit of chlorine and a unit of hydrogen, whence

14 ay*+af?=2ay+&,
2ey=o+toax

The event (1) is also an aggregate of these two events. But these events, of which
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event (1) is constituted, may themselves be compound events, and that in various ways.
Thus, for example, the event

1+t ay*+al?=20y+£
may be considered as the aggregate of the two events,
2oy +oE=ay’+20&.
1420 20 =40y +£*;
in which case the event (1) will be the aggregate of three events—
20yt af=ay*+20f,
1420 4205 =40y +£°,
2ocy=0.+ay’.
Example (2).—Again, a unit of ammonia and three units of iodide of ethyl are iden-
tical with three units of hydriodic acid and a unit of triethylamine.

This event is thus expressed :
oy + Bo’s’w=aw -} o®x’%.

Now this event may be regarded as the aggregate of the three following events:—
oo ’w—ow-to'x%,
1% -+ o’ n 0 = aw -+ olxty,
%"y 4 ot =+ oSy,
Each of these events, too, may itself be regarded as a compound event ; thus the event
o+ o5’ = ow -+ otx?
may be considered as constituted of the following events:—

R N N )|
M tab=atxv+2E, . . . . . . . .. (b)
#E - ePv=0uf+ k. R ()]

For if (a) we take a unit of iodide of ethyl and a unit of cyanic acid and transform
them into a unit of hydriodic acid and a unit of cyanic ether, and then (b) take a unit
of cyanic ether and a unit of water and transform these into a unit of ethylamine and
a unit of carbonic acid, and also (¢) take a unit of ammonia and a unit of carbonic acid
and transform these into a unit of water and a unit of cyanic acid (3), the final result
of these successive events will be to transform a unit of ammonia and a unit of iodide
of ethyl into a unit of hydriodic acid and a unit of ethylamine, which is the event in
question. '

Example (3).—The following equation expresses to us the transformation of two
units of marsh-gas and a unit of oxygen into two units of methylic alcohol,

20 +E=20xE41.
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This event may be regarded as an aggregate of seven events, as follows :—

o’ Aayi=a’xy+oy,
o’x Foy=a’xy oy,
orytal =a’x& +ay,
o’y tab =a’x& oy,
St E=20E+1,
2ay=o0+ox?
2oy =a—ax?,
and has absolutely been realized by the synthesis of these events. But each of these
events may itself be an aggregate. Take, for example, the event

oy tob=a"%E+oy ;
this result may be obtained by the synthesis of the two following events :—

oyl =ayta®’E, . . . . . . . . . (a)
A I - A ()

For if we take (a) a unit of chloride of methyl and a unit of acetic acid and transform
them into a unit of hydrochloric acid and a unit of acetate of methyl, and then (b) take
that unit of acetate of methyl and a unit of water and transform them into a unit of
acetic acid and a unit of methylic alcohol, the final result of these successive transfor-
mations will be the transformation of a unit of chloride of methyl and a unit of water
into a unit of alcohol and a unit of hydrochloric acid.

Example (4).—Again, let the event considered be the synthetical construction of
methylic alcohol from carbon, hydrogen, and oxygen according to the following
equation,

2utdo+t+E=2aE+5. . . . . . . . L. (1)

Now this event may be regarded as an aggregate of the three following events, the
first of which 1s the “ aggregate ” considered in the last example, the latter events being
repeated twice,

(2) 20 +E =20’xE+1,
(3) 2atn =o'+ 2,

Again, the second of these two events may be regarded as constituted of the following
events :—
(1) Formation of acetylene from carbon and hydrogen,
2%+ o=ax?42.
(2) Formation of olefiant gas from acetylene and hydrogen,
o’ o=+ 1.
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(3) Formation of alcohol frem olefiant gas and water,
o’ tab=o’x*E+1.

(4) Oxidation of alcohol with the formation of acetic acid and water,
R s

(5) Decomposition of acetic acid into marsh-gas and carbonic acid,
148 =o' +xE%

(6) Resolution of carbonic acid info carbon and oxygen,

14x=x+E

For if we write down these equations in order, and add the corresponding members
of those equations, we arrive at the equation required,

2xto=ax’+2,
oax’ta—=a’x’+1,
o’ fab=a’’E+1,
e+ E=af+a’x*E,
A 4%’ =o’x +xE%,
14+#E=x»+4£

Now we have seen in the last example that the event (2) may be considered as con-
stituted of 8 events, and the event (3) as constituted of 6 events, each of which is
repeated twice in the “compound event ” (1), which therefore is to be regarded as con-
stituted of 20 distinct ¢ occurrences” or “events.” This last example is derived, with
certain modifications, from the work of the distinguished chemist BerrarLoT, ¢ Chimie
organique fondée sur la Synthése,” where numerous similar illustrations of the aggrega-
tion of phenomena may be found. ¢ Clest ainsi,” says BERTHELOT, ¢ que 'on parvient
a la syntheése d'un alcool par une succession réguliére de réactions définies ” (Chimie
organique fondée sur la Synthese, ed. 1860, vol. i. p. 97).

The synthesis of an alcohol thus effected by BErTaELOT is undoubtedly brought about
by the aggregation of phenomena, and so far affords an illustration of a compound event,
But this aggregate of phenomena is an accidental collection of events selected to
attain a particular end, which, although concurring to produce the result in question, are
yet marked by no regular order or sequence and are characterized by no common pro-
perties. Such aggregates are not to be confounded with the aggregates subsequently
considered in this Calculus.

Suorron ITL—ON THE « CAUSES” OF CHEMICAL EVENTS.

Having thus arrived at the conception of the nature of that complex phenomenon
which is here termed ¢a compound chemical event” as an aggregate or collection of
MDCCCLXXVIL. N
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events which concur to produce a specified result, and that result alone, we shall endea-
vour to arrive at a similar comprehension of the nature of those operations by which
events occur, that is to say, of “the causes of events.” The fundamental idea through
which these operations will be conceived of in this Calculus is given in the following
definition.

(1) Definition :—

If in any chemical event the change in the arrangement of the symbols by which the
composition of the units of matter before and after the event respectively is symbolized
be of such a nature that where in the arrangement before the event the symbol &
appears the symbol « appears in the arrangement after that event, and where the
symbol ¢ appears in the arrangement before that event the symbol x appears in the
arrangement after that event (# and @ being symbols of two among the prime factors by
which the equation is expressed), so that the two arrangements differ in this respect,
and in this respect alone, then that event is said to occur by the ¢ substitution”
or “exchange ” of @ for &, and that * substitution” is said to be the “cause” of that
event.

1t is evident that, consistently with this definition, the same events may arise from
more than one “ cause ;” for it may be true that where, in the arrangement before the
event, the symbol x appears the symbol @ appears in the arrangement after that event,
and that where the symbol & appears in the arrangement after that event the symbol a
appears in the arrangement before that event, so that the two arrangements differ in
this respect, and in this respect alone; but it may also be true that where in the
arrangement before the event the symbol y appears the symbol & appears in the
arrangement after that event, and where the symbol & appears in the arrangement
before the event the symbol y appears in the arrangement after the event, so that the
two arrangements differ in this respect, and in this respect alone. In this case the event
may be referred to either of two * causes,” namely, to the substitution of « for ' or for
b for y. These causes represent two alternative hypotheses as to the ways in which the
event may have occurred. Similarly one and the same “event” may be referred to
several alternative “causes,” representing various hypotheses as to the modes of the
occurrence of that event.

(2) If, however, the two arrangements so differ that where the symbol x appears in
the arrangement before the event @ appears in the arrangement after the event, and
where @ appears in the arrangement before the event # appears in the arrangement
after the event, and also differ in the circumstance that where the symbol y appears in
the arrangement before the event & appears in the arrangement after the event, and
where & appears in the arrangement before the event y appears in the arrangement
after the event, then that event is said to occur by two substitutions, namely, by the
substitution of & for & and of & for y; and these two substitutions are said to be the two
“causes” of that event for the production of which they concur; and, similarly, if
the arrangements referred to differ in the » circumstances that where x, 7, 2...
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appear in the arrangement before that event, @, b, ¢ . . . appear in the arrangement after
that event, and where @, b, ¢ .. . appear in the arrangement before that event, ,y,2.. .
appear in the arrangement after that event, then the event is said to occur by the »
substitutions of @ for «, b for y, ¢ for z, and these substitutions are termed the » causes
of the event which concur for its production.

The same remark is applicable here as in the case of an event occurring by a single
“ cause,” namely, that as events may occur by a single “ cause” in any number of ways,
so also may we have events occurring by a set of two or more *causes” in any number
of ways, each set of “causes” representing an alternative hypothesis as to the mode of
the occurrence of that event.

(3) Definition :—

If an event be regarded as occurring by the substitution of e for #, # is termed
the symbol of the * variable ” in that event, and « is termed a “ value” of & (being that
for which « is exchanged); if the event be regarded as occurring by the substitutions of
a for &, b for y, ¢ for 2, x,7, z are termed the symbols of the “variablés” in that event,
and @, b, ¢ the ““ values” of those * variables,” and so on for any number of substitutions.

(4) Definition :—

A “constant weight” is a weight which, in any specified event or system of events,
is not exchanged for any other weight.

(5) It is a consequence of the above definitions that the substitutions” by which
events occur will be indicated to us by certain algebraical properties of the equations
which express the results of those events. Thus, if an event occurs by the substitution
of @ for , it is evident, from the definition, that the equation corresponding to the event
must vanish when & is put equal to ¢; and if the event occurs by one substitution, and
in one way only by such a substitution, so that it can be referred to one cause alone, the
equation will vanish under this condition, and under no other similar condition. If there
be two alternative “causes” of the event, so that the event may be regarded as occur-
ring either by the substitution of & for &, or of b for y, the equation will vanish when
x is put equal to @, and also will vanish when 7 is put equal to &; and if there be »
alternative causes of the event, so that the event may occur either by the substitution of
a for &, of b fory, of ¢ for z, ... the equation will vanish in » ways, namely, when either
 is put equal to @, or y is put equal to §, or z is put equal to ¢,... If the event may
be referred to two “causes” which concur for its production, so that it occurs by two
substitutions, namely, the substitutions of @ for # and of 4 for y, the equation will vanish
if in that equation we simultaneously put « equal to @ and y equal to 4; and if the event
may be referred to » “ causes ” which concur for its production, so that it occurs'by n
substitutions of ¢ for &, b for y, ¢ for z . . ., the equation will vanish if in that equation
we simultaneously put x equal to @, y equal to b, zequal to ¢... And, similarly, if the
equation may not only be referred to n causes, but may be referred in m ways to =
causes, there will then be m ways in which the equation will vanish under a similar
condition.

N 2
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It is necessary to notice that every algebraical condition under which a chemical equa-
tion may vanish does not necessarily correspond to some one among the *causes” of the
event, or throw light upon such causes. For an equation may vanish under algebraical
conditions which are chemically uninterpretable and unmeaning. But if an equation
vanish under certain specified conditions, such as that #=a, when 2 and @ are two of
the prime factors of an equation constructed upon the principles before laid down
(L. Sec. V., II. Sec. 1.), these conditions are capable of interpretation, and inform us
of the “real” causes of the event—the term ¢“real” causes being here used to distin-
guish such causes from “imaginary ” causes, which may be defined as substitutions cor-
responding to algebraical conditions which are uninterpretable. It isquite possible that
the consideration of “imaginary” causes may hereafter find its place in the chemical
Calculus and lead to true results, but we shall not now consider them.

(6) I shall now proceed to the consideration of certain forms of equations corre-
sponding to the events of which the definition has now been given, and the interpretation
of these forms.

I will commence with the equation already referred to (Part II. Sec. L. (4)),

Azy+Aab=Aya-+Axb.

Now, if we compare the arrangement before the event, namely, Azy-+Aab, with the
arrangement after the event, namely, Aay-} Axb, superposing those arrangements the
one upon the other, thus—

Azy+Aab,. . . . . . . . . . . . L
Aay+A2b, . . . . . . . . . . . . IL

it will be seen that where & appears in the arrangement before the event, @ appears in
the arrangement after the event, and where & appears in the arrangement after the
event, @ appears in the arrangement before the event, and the two arrangements differ
in this respect, and in thisrespect alone. Thence, according to the definition, the event
symbolized in the above equation may occur by the substitution of @ for #, and this sub-
stitution is a cause of that event.

But, since Aay+Axb=Azb+ Aay, we may compare these arrangements from another
point of view ; for, writing the arrangements after the eventas Axb4-Aay, and again, as
before, superposing the arrangements the one upon the other, thus—

Axy+Aab, . . . . . . . . . . . . L
Axb+Aay, . . . . . . . . . . . 1L

it will be seen that where y appears in the arrangement before the event (1.), & appears
in the arrangement after the event (II.), and where & appears in the arrangement before
the event (I.), ¥ appears in the arrangement after the event (I1.), and the two arrange-
ments differ in this respect, and in this respect alone. Whence, according to the defini-
tion, the event may occur by the substitution of & for y, which substitution is a real
“cause” of that event.
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This event therefore is an event which may be referred to either of two ¢ causes,”
namely, to the substitution of « for # and of & for y, which * causes” represent two
alternative hypotheses as to the ways of the occurrence of the event.

But, further, not only is it true that the event may be referred to one or the other
of these two causes, the occurrence of either of which is sufficient to account for the
event, but the event must be so referred as there is no other substitution whatever which
will produce the result in question. This may be proved experimentally by altering
the arrangement of the letters in every permissible manner, and, as before, superposing
the arrangements. _

But it is sufficient to observe that there are only two conceivable cases ; for where Axy
appears before the event, either Aay appears after the event or Azbd so appears. In the
former case the result is attained, if possible at all, by the substitution of @ for «; in
the latter case, by the substitution of 4 for .

We might also, in demonstrating the above proposition, have reasoned thus: having
proved that the event may occur by the substitution of @ for 2, since in the above equa-
tion we may change the places of x and y, provided also we change the places of @ and
b, and the equation will be unaffected by this alteration. Hence, whatever is true of
and ¢ is also true of y and 4; that is to say, whatever assertion may be made in reference
to that equation in regard to x and « is also true if in that assertion we substitute y for x
and b for a.

Writing the above equation in the form u=0, we have, from the distributive law
(Part 1. Sec. II. (6)),

v=A(x—a)(y—"b),

from which it is apparent that the substitution by which the event occurs, that is to say,
the “ causes ” of the event, are indicated to us by the factors of this equation, and are
coincident with those factors; and, precisely as the factors in a numerical equation of
this form indicate to us the two sole conditions under which the numerical identity
asserted in the equation is possible, namely, the identity of  and @, or the identity of y
and b, so in the case of this chemical equation the factors indicate to us the two sole
conditions, or hypotheses, under which the chemical identity expressed in that equation
is possible, namely, the substitution of & for x, or the substitution of 4 for y. For the
only possible way in which the “ weights,” or matter, symbolized as Axy+ Aab can have
been chemically converted into the ¢ weights,” or matter, symbolized as Axb-+Aay is by
the occurrence of one or other of these two ¢ substitutions,” either of which affords an
adequate and sufficient cause of the metamorphosis.

As the expression A(x—a)(y—>) is the symbol of the event of the transformation of
Azy and Aab into Aay and Abx, so the expression —A(x—a)(y—?0)is the symbol of the
transformation of Aay and Adx into Axy and Aeb. This event will be termed, in rela-
tion to the former event, the “reverse” of that event or the *reverse event;” and while
the symbol A(z—a)(y—b) is interpreted as the symbol of a « substantive” event in which
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A is constant, and which occurs by the two substitutions indicated; the symbo
—A(r—a)(y—>b) is to be interpreted as the symbol of an event which is the * reverse ”
of an event in which A is constant, and which occurs by those two substitutions,—that is
to say, in the latter case the event is defined by specifying the relation in which that
event stands to another event, the conception of which is essential to its comprehension.
This interpretation is a consequence of the identity (Part I. Sec. II. (4))

—A(r—a)(y—0)=+[~ Alr—a)(y—D)}.
Alw—a)(y—0)=—Aa—2)(y—b),

every event of this kind may be considered from these two points of view, namely, either
as a “substantive” event or as the reverse of some other event; and wherever in this
Calculus the symbol of a chemical event occurs preceded by the negative sign, thus, — U,
that symbol is always to be interpreted as though it were written 4(—U), namely, as
an event which is the reverse of the event U.

In the light of the preceding observations the reader will interpret the following iden-
tities, which are demonstrated from the principles established, I. Sec. II. (4) (6),

Ale—a)(y—0)=A(a—2)(b—y),
— Alw—a)(y—b)=Ala—a)(y—D),
—[—Af—a)(y—b)]=A(r—a)y—D).

In the previous reasoning the three properties of chemical symbols are utilized which
were demonstrated in Part I. Sec. IL, namely, that 2y+ab=ab+ay, that ay=yx, and
that A(#==a)=Ax+Aa. If any one of these properties should not belong to such
symbols, the reasoning altogether fails.

For the application to a chemical equation of the preceding principles, the equation
must be expi‘essed by means of some specified set of prime factors. Now the only
expression of this kind which we have as yet had occasion to consider is the expression
of chemical equations by means of the prime factors ascertained in Part I., namely, the
prime factors a, x, &, 6,..., which are the symbols of those “weights” which are
undistributed in the total system of chemical phenomena. The term ‘simple” or
undistributed weight, however, is a purely relative term, having been defined as a
“ weight” which in some special system of chemical events is not resolved into two or
more weights or made up from such weights (Part I. Sec. I. 12). Hence an equation
may be expressed, possibly even in numerous ways, by means of different sets of prime
factors according to the system of events to which the event under consideration is
referred—these prime factors being indeed the symbols of the ¢ simple weights” among
which the ¢ substitutions ” are conceived of as occurring which are the causes of the
events, every such expression necessarily involves an assertion or an hypothesis as to the
composition of some one or more among the units of ponderable matter, of which the
transformations are considered, which constitutes the base of the symbolic system,

Since
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analogous to the fundamental hypothesis which is the base of the system constructed
in Part I., namely, that the unit of hydrogen is itself a simple weight and expressed
by a single letter «. This is not the place for the further discussion of this question,
which I shall hereafter have occasion to consider in some detail; but I have made the
preceding remarks to prevent any misapprehension arising in the mind of the reader in
reference to the examples of chemical events given in this and the following Section, in
which the equations are expressed by various sets of prime factors. These are not, as
a matter of fact, mere arbitrary expressions (although, indeed, such would have
sufficiently served the object in view), but I have not entered on the reasons which
justify them, as being beside my purpose. I need only further observe that the
equations arenot to be considered collectively as representing systems of events (although
they may be selected from such systems), but as individual equations, where a system is
reduced to its simplest form, namely to a single event which from some unexplained
reason is represented in the way given.

(7) The following event is an example of this class of phenomena. A unit of chloride
of benzoyl and a unit of potassium alcohol are identical with a unit of chloride of
potassium and a unit of benzoic ether,

o’y a’Ep=oyu o’ £E.

This equation may be expressed by means of the prime factors o, %, w, (a®#€),
(’2*€), and thus written

w(@’wE)x +o(wwE p=oyp+au(e’7E)w%E),

o 1) o, — o27E) =0,

By which equation we are informed that « in this event is *“constant” and that the
event occurs in one of two ways, namely, either by the exchange of the *weight”
o2& for w or of y for o’2’6. Itis to be borne in mind that these hypotheses are purely
relative to this equation alone, and involve the assumption that in this event the
“weights” a, o’2’&, a’2’€, w, ¥ are not distributed. If this restriction be removed,
other views may be taken of the nature of this occurrence.

(8) It is desirable to notice certain special forms of this fundamental phenomenon.
If @=0 so that the “ values” of y and « become identical, the equation becomes

A(r—a)(y—a)=0,

whence

and
Azy+Aa’=Aay+Aaz.

Such an event, for example, is the following :—
Example :—A unit of acetate of chlorine and a unit of iodine are identical with a unit
of acetate of iodine and a unit of the chloride of iodine; thus

a2x2é2x +ocw2=a2x2£2w+owx,
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which may be written thus
a(an®E?) y + aw* = o’ )wy +awy,
whence
a(ax’&?—w)(x— »)=0.
In this event, therefore, a is necessarily to be regarded as “ constant,” and the event
is to be referred to one of two *causes,” namely, the exchange of ax®£® for » or of

for w.
If also #=y, the equation becomes

A(z—a)=0,
the two causes of the event being identical, and
Az’ Ad’=2Aax.
Such an event is the following :—

Example:—A unit of chlorine and a unit of iodine are identical with two units of
chloride of iodine; thus
o+ aw’*=2ayw,
whence

a(x—w)’=0.

In this event « is “ constant;” the event occurs by the substitution of » for y, and occurs
in two ways by that substitution, as is evident on inspecting the equation.
(9) If in the above equation =1, so that the equation becomes

Alz—1)(y—b)=0,

one of the “causes” of the event is the substitution of 1 for . Now the symbol 1,
being interpreted as the symbol of the “weight” or matter which occupies an empty
unit of space, is the symbol of ““no weight;” and this * cause,” therefore, is the substi-
tution of “no weight” for the weight which results from the performance of the
operation . A substitution of this kind will be termed ¢a transference.” Thus we
should say that the above event occurred either by the ¢ substitution” of & for ¢, or by
the « transference ” of 2. ‘

In introducing this term it is necessary to guard against the supposition that “a
transference ” is here rega}ded as a new and peculiar phenomenon distinct from a
“gubstitution.” This is not the case; every “ transference ” is a ““substitution,” although
every substitution is not a “ transference.” This distinction is, however, really inherent
in the received theory of “substitution” or ¢ double decomposition,” as explained even
by the most competent chemists. Thus KExung indicates as a blot on the theory of
“ double decomposition,” that this theory is inapplicable to cases of * direct addition,”
or applicable only with the greatest violence “nicht (oder nur hochst gezwungen)
anwendbar 7 [KEKULE, vol.i. p, 142]. In this Calculus the distinction is not abolished,



SIR B. C. BRODIE ON THE CALCULUS OF CHEMICAL OPERATIONS. 91

but simply does not appear at all, every chemical event being necessarily referred in it
(without any forcing) to the operation of one and the same law of * substitution,” a
generalization due to the introduction of the chemical symbol 1. The meaning of a
remark made in the first part of this Calculus (I. Sec. I1I. (3)) and there left unexplained,
to the effect that the matter of an empty unit of space, although not an object to be
presented to the imagination, must nevertheless, if we would reason correctly, be
“treated as a reality in the order of ideas,” will now be apparent.
Example :—The following event is of the above form,

asx’w Fotv=aw -} a'x?,
which equation may be written thus
a(w—a)(o’x*—1)=0.

The event here symbolized is the transformation of a unit of iodide of ethyl and a
unit of ammonia into a unit of hydriodic acid and a unit of ethylamine, which event
may be referred to one of two causes, namely, either to the substitution of av for w,
or to the transference of o’¢’, as is seen on inspecting the above equation.

Example :—Again,

o+ oa=2af,
a(E—1)*=0.

This equation expresses the event of the transformation of a unit of hydlofren and a
unit of binoxide of hydrogen into two units of water.

This event occurs by * the transference ” of £, and in two ways by that “ transference.”
Example :—Again take the equation

't ab=20"%,
as expressed by the prime factors a, £, (a?),
a5(a’%”) +ab=2af(a’x"),

af(o’x*—1)*=0,

or

or

which symbolizes the event of the tr: ansfmmatlon of a unit of ether and a unit of water
into two units of alcohol.

In this event o5 (the unit of water) is necessarily to be regarded as constant. The
event occurs by “ the transference” of o’% and in two ways by that  transference.

If in the equation A(z—a)(y—b)=0,  A=1, so that

(2—a)y—8)=0,
“no weight” is constant, the event being fully defined when we say that the event
occurs by the substitution of @ for 2 or of 4 for .

Example :—Such an event, for example, is the transformation of a unit of hydrogen
MDCCCLXXYIL. 0
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and a unit of sulphide of mercury into a unit of mercury and a unit of sulphide of
hydrogen; thus
00+ o=wd40,

(6—a)(9—1)=0.

In which event “no weight” is constant, and the event occurs either by the ¢substi
tution” of a for & or by the transference of 4.
Example :—Or, again, the transformation of a unit of binoxide of hydrogen into a

unit of hydrogen and a unit of oxygen, which may be thus expressed,

(a—1)((€)—1)=0.

In which event, again, ““no weight” is constant, and the event occurs either by the
transference of « or the transference of &, as is apparent from the equation
14a(&)=a+(£)-

(10) The consideration of an event, not as a * substantive ” event, but as * the reverse ”
of some other event, is a principle of very real utility, both as regards our appreciation
of the real “causes” of events, and also as regards our appreciation of the analogies
and relations of events.

Take, for example, the event of the transformation of a unit of binoxide of hydrogen
and a unjt of sulphurous acid into a unit of sulphuric acid, the result of which is
given in the equation

ol +08°=1 +abs".
Now this equation may be expressed by the prime factors («£*) and (4£*) and written

thus,
(28 +(08") =1+ (a£")(YE°)-

The symbol of this occurrence, regarded as a substantive event, is

(1—ag’) (68 —1)=0,
which compels us to interpret the factor 1 —(a£”), in which case it would be necessary
to introduce the symbol 1 into the equation in an explicit form. But these difficulties
disappear when we write the equation thus,

+[— (£ —1)(¢&"—1)]=0.

In this case we do not define the above event as a substantive event; but we simply
say that it is the reverse of another event, the nature of which we can readily compre-
hend, the two alternative causes of which are the transference of (&) and the trans-
ference of (45°).

Again, the equation

ooy’ =2ay,
which expresses the formation of hydrochloric acid, may be written thus,
a(x—1)=0,
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being an event in which « is constant, and which occurs in two ways by the transference
of .
Now the resolution of hydrochloric acid into its elements is thus expressed,

2oy =a-+ay?

the symbol of which, regarded as a substantive event, is

(1) (x—1)=0.
Instead of attempting to interpret the factor (1—y)we may write this event thus,
[ —a{x—1)1=0;

in which case we do not attempt to explain the *causes” of the event itself, but instead
of so doing, we say that the event is the reverse of an event of which both causes are
intelligible to us.

The events which we have now considered are completely defined by their symbolical
expression. They are events which may be referred to two alternative * causes,” and
to two such “ causes ” alone; thatis to say, they are events which necessarily occur by one
or the other of two specified substitutions, and by this property are, as a class, separated
from all other phenomena. This great class of events is, however, only one, and that
the very simplest, instance of an indefinite number of such systems to the conception
and consideration of which we are brought by the development of the methods of this
Calculus, and to the explanation of which I shall now proceed. Of these systems, also,
I shall lay before the reader a sufficient number of examples to invest these conceptions
with reality, and to satisfy him that we are not dealing simply with algebraical forms,
but with algebraical forms corresponding to real occurrences. It will not, however, be
necessary to dwell at equal length upon this portion of the subject; for the reader
who has accompanied me so far will readily appreciate what I have now to submit to
him.

(11) If an equation be expressed as the continued product of three factors each of
the form #—a, so that

A(@w—a)(y—0b)(z—c)=0,

the event may be conceived of as occurring by one substitution and, as thus occurring,
in three different ways, namely, by the substitution of @ for # and of & for y and of
¢ for z, which three * substitutions ” are to be regarded as three alternative “ causes” of
that event, to the one or the other of which that event must necessarily be referred.
For the result of this event is expressed in the equation

Axyz+Aabz+Aayc+ Axbo=Axyc+ Aabo+ Aayz+ Axbz ;

and if, proceeding as before, we institute a comparison between the arrangement before
the event and the arrangement after the event, with the view of ascertaining experi-
02
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mentally the substitutions which are the causes of the event, superposing the one
arrangement upon the other, thus—

Axyz+4Aabs+Aayc+Axbe, . . . . . . . . L
Axyc+Aabc+Aayz+Azbz, . . . . . . . . IL

it is apparent that where z appears in the arrangement (I1.) before the event ¢ appears
in the arrangement (II.) after the event, and where ¢ appears in the arrangement (I.)
before the event z appears in the arrangement (II.) after the event, and the arrangements
differ in that respect, and in that respect alone. That is to say, according to the defi-
nition, Section III. (1), the event occurs by the substitution of ¢ for z. But since

A(x—a)(y—b)(z—c)=A(x—a)(z—c)(y—"0),
the above reasoning in regard to z and ¢ is equally correct with regard to y and &, that
is to say, the event also occurs by the “ substitution ” of 4 for y; and similarly the event
also occurs by the “substitution” of ¢ for «; and there are no other two letters in regard
to which a similar assertion can be made.

(12) Every actual example of such an event in which #, 9, z and ¢, 6, ¢ are all different
involves the construction of no less than eight different chemical substances connected
by the relation of identity expressed in the above equation. The problem of the reali-
zation of such an event is greatly simplified where two or more among the letters @, 7, z
or a, b, ¢ become identical. The simplest case, from this point of view (the case, that is,
which involves the construction of the smallest number of different substances), is that in
which #=y =2, and also a=b=¢. The equation then becomes

A(r—a)=0,
and
A’ +3Ac’r=3Aar’+4 Ad’.

Example :—A unit of chloroform and three units of chloride of methyl are identical

with three units of mono-methyl chloride and a unit of marsh-gas; thus

() +3(an = () + (2%,

w’x(—1)’=0.

The event therefore is fully defined by saying that the above phenomenon is an event
in which «’ (the symbol of the unit of marsh-gas) is ¢ constant,” and which occurs by
the transference of y, and occurs by that transference in three ways.

Example :—A unit of the trichlorhydrine of glycerine and three units of monochlorhy-
drine are identical with a unit of glycerine and three units of dichlorhydrine; thus

a4x3x3+ 3“4"382%:“4}‘353_‘— 3“47(35%2,
a0 (3 —E)'=0.

In this event «*’, the unit of the (so called) hydride of propyl, is constant. The event
occurs by the substitution of £ for y, and by that substitution in three ways.

whence.

whence
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Example :—A unit of glycerine and three units of diacetine are identical with three
units of monacetine and a unit of triacetine,

o4 x°E + 30 %78 = B0’k E - a7 E,
which equation may be written thus, ,
G B (OB =B () + o B B,
—a'%’E (ex*’—1)°
That is to say, this event is the reverse of an event in which «'%°£® (the unit of glycerine)
is constant, and which occurs by the transference of «x’¢, and in three ways by that

transference.
If in the above equation &=y and a=~b=¢, the equation becomes

A(z—a)(z—a)=0,

whence

and
Az +2A0%r+Aa*z=Aar’+2Aaxz+ Ad’.

Example:—A unit of ethyldiacetamide and two units of acetamide and a unit of
ethylamine are identical with a unit of diacetamide and two units of diethylmonace-
tamide and a unit of ammonia [ref. KekuLg, vol. i. p. §76]; thus

, oS 200 ey F oty = ot £ + 2ax Ev - o,
which equation may be put in the following form,

ov(0ia®E P (*x?) 4 2002’ E )+ v (o7 ) = 0?v( 05 )* 4 2ePv(0e°E ) ()P - 0%,
whence
(o’ —1 ) (a’%’—1)=0.

In this event &% (the unit of ammonia) is constant, and the event occurs by the trans-
ference of o?? and by the transference of wx’£, and by the latter transference in two
ways.

Example:—A unit of diethylamylamine, a unit of amylamine, and two units of
ethylamine are identical with a unit of ammonia, a unit of diethylamine, and two units
of ethylamylamine,
o @M%+ 073y ot x =0 + e’x v+ 20°%7v.

This equation may be written thus,
(0% (0°x®) (00 x®) + 2e(07x ) = e+ oPv(0°x* )P - 2% (eeie?) (0°x°),

(0% —1)%(a"%® —1)=0.

In this event «% (the unit of ammonia) is constant. The event occurs either by the
transference of «°x° or by the transference of «*’, and by the latter transference in one
of two ways.

If a=b=¢, the equation becomes
Ale—a)(y—a)(z—a)=",

whence

and
Azyz+ A’z + Ad’y+ Aa’z=Aazxy+ Aavz+ Aayz 4+ Aa’.
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Example :—A unit of methylethylamylamine and a unit of methylamine and a
unit of ethylamine and a unit of amylamine are identical with a unit of methylethyl-
amine and a unit of methylamylamine and a unit of ethylamylamine and a unit of

ammonia ; thus
R R S P T S R O S

which equation may be written thus,

(o) (cere)(06%%)(®2e) - (6% (e ) - (e2™v) (0%5e%) - (%) (o) = (%) (ete ) (e®)
+ (o) (e )(e6"2°) A (™) (0°%* ) (°x® ) + (&),

whence
e’y(oe—1)(e®%® —1)(0**—1)=0;

¢’ (the unit of ammonia) is constant, and the event occurs by the transference of wx,
and by the transference of «’¢*, and by the transference of a’°.
If a=0 the equation becomes

A(z—a)(y—a)(z—c)=0,
and

Azxyz+Aacr+ Aacy+Ad’z=Acxy+ Aaxz+ Aayz+Aa’c.

Example :—A unit of the acetobromochlorhydrine of glycerine and a unit of mon
acetine and a unit of the monobromohydrine of glycerine and a unit of the monochlor
hydrine of glycerine are identical with a unit of glycerine and a unit of the bromo
chlorhydrine.of glycerine and a unit of the acetobromohydrine of glycerine and a unit
of the acetochlorhydrine of glycerine, whence

MSXBEQBX+“5x5E4 __}_064;‘3526 + “4}‘3§2X=“4x353+a4x3§ﬁ+“5;{5536+ “5}‘553)(.
This equation may be written thus,

(a'°E )’ E) By + () (ax’E)E° + (e E)BE+- (w5 oy = (> E)E"
+('°)By A (' E) (e E)BE (' °E )(eE)E X

OGP —E) s — &) eE—1)=0.

We are thus informed that in this event a'x*¢ is constant, and that there are three

whence

causes of the event, namely, the *transference” of ax*%, the substitution of £ for y, and
the substitution of & for 3.

(13) By reasoning analogous to that previously employed, it may be readily demon-
strated that if a chemical equation be expressed by four factors of the form #—a, so that

A(z—a)(y—0b)(z—c)(v—d)=0,

the event symbolized in that equation may occur by one substitution, and may thus
occur in four different ways; that is to say, there are four alternative ¢ causes” of that
event, to one or the other of which the event must necessarily be referred, namely, the
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substitution of @ for x, of & for y, of ¢ for z, and of d for v. The same principle may be
extended to any number of factors; and generally, if a chemical equation be expressed
by » such factors, so that
Alx—a)(y—0)(z—c)(v—d)w—e) . ... =0,

the event symbolized in that equation may occur by one substitution, and may thus occur
in » ways; that is to say, there are » alternative “ causes” of that event to one or other
of which the event must necessarily be referred, namely, the % substitutions indicated
by the n factors of that equation.

As the complexity of chemical phenomena increases so do these phenomena, regarded
as actual events, become more rare, and it is more and more difficult to give real examples
of them. This arises mainly perhaps from the difficulty inherent in the way of their
experimental realization, an event expressed even by four different factors requiring the
construction of no less than sixteen different substances connected by a certain definite
relation, but also from the circumstance that the efforts of chemists have never been
directed to the realization of such phenomena as a definite problem. We have the
strongest evidence in favour of the existence of these relations, but we cannot exhibit
them in a complete form. Such events are, if we may so say, fragmentary and imperfect,
like buildings in process of construction, some near to completion, others of which the
plan and outline are visible to the eye of the architect alone.

The following events are examples of this class:—

Example :—A unit of tetrachloride of carbon together with six units of monomethyl
chloride and a unit of marsh-gas are identical with four units of chloroform and four
units of chloride of methyl; thus

(@) 4 6(c )y (o) = 4(a')x" + 4w’ )y

(o) (3 —1)*=0.

In this event ’x, the symbol of the unit of marsh-gas, is constant. The event occurs
by the transference of y, and in four ways by that transference.

Example:—A unit of tetrachloride of tin, a unit of stannic diethylchloride, four
units of stannic ethylmethylchloride [unknown], a unit of stannic dimethylchloride,
and a unit of stannic diethyldimethyl are identical with two units of stannic methyl-
trichloride, two units of stannic methylchloridediethyl [unknown], two units of stannic

“ ethylchloridedimethyl, and two units of stannic ethyltrichloride*, whence

whence

o' ety - Aol ot Py - 080 =20 2’2077
1200ty 4 20y
This equation may be written thus, |
(e Y (0 Y A o Yoo (o e Vo (e )
= 2! e+ 2o Yo ) o)y - 2o Y e e A 2 Y
* Vide Kuxut, vol. 1. 782, p. 505.
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whence
() = e (= e =0.

This event, therefore, is to be considered as occurring by the substitution of ax for »
and by the substitution of «’z? for %, and in two ways by each of these substitutions
respectively.

Szerron 1V,

We thus arrive at the interpretation of the chemical equation

Alx—a)(y—0b)(z—c) ... =0,
considered as the symbol of a “simple chemical event.” From the consideration of such
an equation we are led to refer the event thus symbolized to certain specified substi-
tutions (indicated to us by the factors of the equation) as the causes of that event, by
the enumeration of which causes, together with the constant A, the event is defined,
there being only one possible event which will satisfy the conditions specified in the
equation. Such equations constitute a class apart. The explanation of a chemical
event consists in referring the event to the causes which concur to produce it. There-
fore it is only those events which can be thus expressed which can, in any proper sense,
be said to be explained, simple events, and such events admit of no further explana-
tion of this kind.

Now a chemical equation may not be of the above form, an equation to a “simple
event,” but yet may be expressed by means of rational factors. In this case the event
indicated in the equation may be immediately resolved into some number of simple
events occurring by one or more specified substitutions, of which that event is the
aggregate. Such aggregates were the first actually discovered by me; and although in
the next section the whole question of the analysis of aggregates will be discussed in a
far more complete manner, I shall yet invite the reader, with a view to a clear compre-
hension of the subject, to follow the course actually pursued, and to consider a few of
the simpler problems which such equations present to us.

Examples.

(1) A unit of chlorine and two units of hydriodic acid are identical with a unit of iodine
and two units of hydrochloric acid, and therefore may be transformed into these units.
The equation to this event is

ey® + 2ow="20y 4 as’,
which equation may be thus expressed,
oy +o—2)(x—«)=0.

Now we cannot interpret the equation in this form; for although, it is true, we know
what is meant by the factor (y—w) and can perform the substitution which it directs us
to perform, the factor (y+»—2), which should express the alternative mode of the
occurrence of the event, conveys no meaning to us. We can, however, easily convert’
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the equation into an interpretable form by resolving this factor. If this be effected
the equation to the event becomes

a(y—1)(x—eo)+a(e—1)(}—»)=0.

From the principles demonstrated in Section I. (4) each of the terms of this equation
may be equated to zero, and we are thus informed that this event is an aggregate of the
two simple events, .

a{x—1)(x—=)=0,
a{w—1)(3—»)=0.

Since these equations have a factor in common (y—w), the events expressed in them
may be referred to a common cause, namely, the substitution of » for y, and may be
regarded as members of a system of two events (in which « is constant) occurring by
this substitution. At the same time we have in each case an alternative cause of
the event, namely, in the former of the two events the transference of y, in the latter
the transference of «, the original event regarded in its result being

o+ 20 =20y + aw®,

and the constituents of that event similarly regarded being
oy’ +oaw=ox +owy,
awx—l—aa):acﬁ—l—ax.

The synthesis here indicated has been actually effected, the unit awy being no other
than the unit of the chloride of iodine, which is formed, together with a unit of hydro-
chloric acid, by the action of a unit of chlorine on a unit of hydriodic acid according
to the former equation, and a unit of which, together with a unit of hydriodic acid, is
resolved into a unit of iodine and a unit of hydrochloric acid according to the latter
equation.

(2) A unit of chlorosulphuric acid and two units of water are identical with a unit
of sulphuric acid and two units of hydrochloric acid, thus

obE%%" + 20 =l + 20y
This equation may be thus expressed,

o 08°x +05'—2)(x—£)=0-
Here, again, we cannot interpret one of the factors of the equation, namely (45 +0£°—2) ;

but proceeding as before we may resolve this factor, and bring the equation into an
interpretable form, thus

{067 —1)(x—&)+o(08'—1)(x—£)=0.
Equating as before each term of this equation to zero, we are informed that the event
is an aggregate of the two events /

a0y —1)(x—E)=0,
(05 —1)(—&)=0.

MDCCCLXXYVII. P
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In this case, again, the two events may be referred to a common cause, namely the
substitution of £ for . But in each case an alternative is presented to us, namely, in
the former of the two events the transference of (£°y), regarded as the symbol of a
simple weight, and one of the prime factors of the equation, and in the latter event the
transference of (4£°) similarly regarded.

The event

oBE*y + 20 =obE' +2ay
is thus resolved into the constituents
AEY +aE=alE'y +a,
My a=all -y,
both of which events may be considered to occur by the substitution of & for y.

The synthesis of this phenomenon here suggested to us has actually been realized—
the unit of matter, af5’y, which is thus brought under our notice being the unit
of the substance termed hydrochlorosulphurous acid, which is formed, together
with other products, by the action of pentachloride of phosphorus on sulphuric acid,
and is to be recognized as identical with the substance the unit of which appears in
these equations by the property which it possesses of being resolved, together with a
unit of water, into a unit of hydrochloric acid and a unit of sulphuric acid.

(3) A unit of bromide of ethylene and two units of water are resoluble into two units
of hydrobromic acid and a unit of glycol, thus

5?3+ 20E =208+ *%°E.
This equation may be thus expressed
a(o’x’B+a’—2)(B—§)=0,
Ao’ B—1)(B—E) +a(xE—1)(3—£)=0,
the constituents of the event being
a(e’’B—1)(B—£)=0,
a(a’%’E—1)(B—E&)=0.

In these events a is constant; the two events may be referred to a common cause,
namely the substitution of £ for 8. The results are

o’ B ab=of +a*%*BE,
o’x*BE+ab=aB+ax’E%
These events have been realized, the unit «’x"2, intermediate in composition

between glycol and bromide of ethylene, being the monobromohydrin_of glycol.

(4) A unit of diacetic glycol and two units of water are identical with two units of
acetic acid and a unit of glycol, thus

P HE - 20E =2025°E o °E".

whence



SIR B. C. BRODIE ON THE CALCULUS OF CHEMICAL OPERATIONS. 101

This equation may be thus expressed,

(4 a2 o — 1) =0,
(ol — 1) o~ 1) - ak(a'n'E = 1) oo’ —1) =0,
the constituents of the event being
w(nE—1)(on—1)=0,
B0 1) e’ —1)=0.
In these events «f is constant; the two events may be referred to a common cause,
namely the transference of ax’¢. The resulting identities are

ah B af =t L2 a2’E,
a5x6§4 +a§:a4x4g3 +a2x2g2.

These phenomena have been realized, the unit a'«’£®, which together with a unit of
acetic acid is formed by the decomposition of a unit of diacetic glycol and a unit of
water, is the unit of monacetic glycol, which has been prepared by the simultaneous
decomposition of a unit of bromide of ethylene, a unit of acetate of potash, and a unit
of water.

(6) A unit of suberic acid is identical with a unit of the hydride of hexyl and two
units of carbonic acid; this relation is given in the equation

24-a"%°E = o1 22 £,
This equation may be thus expressed

(ol — 2) (8 — 1)=0),
(78— 1) (& — 1) + (o — 1) (22— 1)=0,

the constituents of the event being

(a"’E—1)(x8—1)=0,

(a7’ —1)(x&—1)=0,
which two events may be referred to a common cause, namely the transference of x£”,
the results being

whence

whence

ox®Et+ 1 =a'%’E 4 » &%,
o+ 1= £
The unit &’»’£?, which appears in these events, but not in the original event, is the
unit of cenanthylic acid, the existence of which unit and the properties by which it may
be recognized are here pointed out. ‘
(6) A unit of terchloride of phosphorus and three units of water are resoluble into a
unit of hydrated phosphorous acid and three units of hydrochloric acid, thus
Py’ + 3oE=3uy +a’¢&".
P2
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This equation vanishes when =&, and may be thus expressed

0@y’ +opyb+aps—3)(x—£)=0,

whence the event is constituted as follows—

a(ap)’—1)(x—&)+alopxE —1)(x— &) +a(apt’—1)(x —£)=0;

which equation may be resolved into the three equations

o(a@y’—1)(x—£)=0,
#(apxE—1)(x—£€)=0,
(o= 1)(x—£)=0,
the results being
@0y’ +aE=a’0x’E +ay,
o) +ab=olpxE +oy,
oPoxE ol =0 +ay.

No one of these phenomena has hitherto been realized; but we are thus led to
anticipate their future realization. The unit a’py£’, which is characterized by the
property of being, together with a unit of water, resoluble into a unit of phosphorous
acid and a unit of hydrochloric acid, is (what may be termed) the unit of the mono-
chlorhydrin of phosphorous acid, the unit «’¢x*£ being the dichlorhydrin of the same
substance, the existence of which is also indicated to us by a variety of other consi-
derations.

(7) A unit of the trichlorhydrin of glycerin and three units of sulphide of hydrogen
are resoluble into three units of hydrochloric acid and a unit of trithioglycerin—

o'’y o =Boy + o' 6.
This equation may be thus expressed
o’ %y +atny? — 8)(x—0)=0,
the event being constituted as follows—

a(o5 0 1) —O) ey —1) o — ) o= 1) (g —0)=0;
whence we have as the constituents of the event,

a(e®*F—1)(x—8)=0,

afe’%" 8 —1)(%—6)=0,

= 1) —0)=0,
or
oty o =ax+a'x®e,

05 0y? ol = oy ot x Py,
o'y’ ol = oy +o'x®y 0.
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These three equations inform us of the origin and properties of the units of the
chlorhydrins of the sulphur-derivatives of glycerin, a'x*dy?, a'x°¢’y, which substances
have been procured by Carivs*. In these three events o is constant, and the three
events may be referred to one cause, namely the substitution of 4 for y.

(8) A unit of glycerin and three units of acetic acid are resoluble into.three units of
water and a unit of triacetin, whence

o8 30’5’8 =3+ o7 % &5,
This equation may be thus expressed
—ab(o*°E o' %’ o’ x"E — 8 ) (ax’E—1)=0.

Proceeding as in the last example, we arrive at the following constituents of the
event :—

o*2°E o1’ E =kt El,
o*x’E B =k + oSk ES,
o5’ E + PP E =k ol % E°.

In these events o£, the unit of water, is constant. The three events may be referred to
one cause, namely the transference of ax’. These events have been severally realized,
the experiments by which BERTHELOT procured the units of the three acetates of
glycerin, monacetin o’»*£*, diacetin a’%’£*, and triacetin o/%°¢’, being recorded in these
three equations.

(9) Three units of iodide of ethyl and a unit of ammonia are identical with three
units of hydriodic acid and a unit of triethylamine,

o ’w o’y =3am + a*x%.
This equation may be thus expressed
a(3w—a5x4u—-oc3u2!1—ow)(a2x2— 1):0 ;
whence we have the following constituents of this event:—
a(w—o’x)(a’%*—1)=0,
o w—o’x?)(o?%*—1)=0,
oa(w—a)(a’%*—1)=0.

In these events « is constant; the three events may be referred to a common cause,
namely the transference of a’®. The results of these events are given in the following
equations :—

o+l ntv=aw-+otxb,
0w tatn®y =aw-tolx%'y,
oty —ow+atxh.
The three phenomena of which the above event is the aggregate, the realization of

* Annalen der Chemie, cxxiv. 221.



104 SIR B. C. BRODIE ON THE CALCULUS OF CHEMICAL OPERATIONS.

which is here suggested to us, are the successive stages by which triethylamine has
actually been formed in the investigations of HHoFMANN.
(10) Lastly, take the familiar phenomenon of the decomposition of water into its
elements.
Two units of water are identical with two units of hydrogen and a unit of oxygen, thus

14 20E=2a+£.
This equation may be thus expressed,

(20—1—£)(E—1)=0;
(a—E)(E—1)+(e—1)E—1)=0,

“the constituents of the event being
(x—E)(E—1)=0,
(a—1)(E—1)=0. |
These two events may be referred to a common cause, namely the transference of £.
Their results are given in the equations
o5 +E=E"+u;
ob+1=E£+a.
The element £ which appears in these phenomena has not been isolated, but its
existence is indicated to us as an object of research not here alone, but also by the
analyses of numerous other chemical events.

whence

The previous examples are offered to the consideration of the reader, not as illus-
trations of the general treatment of the subject to be ultimately pursued, but as examples
of the most elementary application of the principles of algebraical reasoning, according
to the fundamental methods of this calculus, to the analysis of phenomena. By the
application to chemical equations of purely formal processes, we elicit from them new
and true information as to the chemical occurrences of which they express the results.
From this point of view the preceding analyses have a special interest. So far as I am
aware they are the very first application which has been made of what can be termed
(in any exact sense) algebraical reasoning in chemistry. Such examples might be inde-
finitely multiplied ; but there would be no object in proceeding further in this direction.
The method here employed is obviously of but narrow application, being limited to such
équations as can be expressed by rational factors (which is an exceptional case), and is
superseded by the more general treatment of the subject developed in the following
section, to which I will now proceed.

Secron V.
(1) We have now constructed, in accordance with the method of this calculus, a
symbolical representation of simple chemical events, according to which these events are
referred to a definite system of causes, and are conceived of as occurring by means of
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operations of which the result is the mutual exchange of the simple weights of which
the units of matter are constituted. Here, again, if we would reason correctly, it is
essential to discriminate between the operation and the result of the operation. The
symbol (2—a) occurring among the factors of a chemical equation is an interpretable
symbol, which is defined, not by reference to a hypothetical process, but as the symbol
of an operation of which the result is the exchange of the bit of matter resulting from
the operation ¢ for the bit of matter resulting from the operation #. As, for example,
the expression (y—&) is the symbol of the operation of which the result is the exchange,
between two units of matter, of the bit of the matter of oxygen resulting from the
operation £ which weighs 0-715 grm., for the bit of the matter of chlorine resulting
from the operation +, which weighs 1592 grm., the exchange occurring between two
portions of matter the nature of which is not specified, but which severally occupy in
the gaseous condition at standard temperature and pressure the space of 1000 cubic
centims. But this symbol cannot be interpreted as the symbol of a portion of ponder-
able matter, for there is no reason to believe the simple weight w(£) to be contained in
the simple weight w(y), and there is no external reality, as far as we are aware, corre-
sponding to the difference w(y)—w(£). Nor, again, are we to imagine that the process
by which this result is attained consists in the actual exchange, in their totality, of
these bits Of matter the one for the other, as we may exchange a white ball for a red
ball. On the contrary, when the unit of hydrochloric acid oy, passes into the unit of
water a£ by the process of which the final result is the substitution in that unit of &
for y, that unit must be regarded as passing by a process of continuous change through
every value intermediate between oy and «f, an assumption in perfect accordance with
what we know of the gradual character of chemical changes, which are not instanta-
neous events, but events occurring in definite periods of time. This question first comes
under our notice when we pass from the consideration of things and of events to the
consideration of the chemical relations of things and the chemical relations of events.
Certain relations of the units of matter are the necessary consequence of the nature

of those simple chemical events in which they have their origin. If we consider the
symbols of the four units of ponderable matter which appear in a simple event of the
second order,

Alw—a)(y—8)=0,
namely,

Azy,

Aay,

Axb,

Aabd,
it appears that these symbols are the combinations of the letters 2, y, a, b, taken two

and two, combined with a constant A, and are necessarily derived by substitution the
one from the other—A ay being derived from A2y by the substitution of & for z,
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Az b from A 2y by the substitution of 4 for y, and A ad from A 2y by the substitution
of ¢ for £ and of 6 for . Similarly, in the case of a simple event of the third order,

A(r—a)(y—b)(z—c)=0,
we have as the symbols of the units which appear in that event
Azyaz,
Aayaz,
Azbz,
Azyec,
Aabz,
Aayec,
Axbe,
Aabe,

which contain the combinations of the letters z, ¥, z; a, b, ¢ taken three and three
together, and may severally be regarded as derived from the symbol A 2y z by the sub-
stitution in that expression, in all possible ways, of @ for @, & for 7, and ¢ for z.
Similar relations obviously prevail between the symbols of the units of matter which
appear in simple events of the fourth or any higher order. These relations are at once
perceived on the consideration of the general forms of chemical equations. In special
instances they are to a certain extent veiled by the identification of the symbols of some
among the simple weights, by the exchanges of which the event occurs, and also by the
suppression of the chemical symbol 1. As regards the last point it may be observed
that we are always at liberty to replace the chemical symbol 1, where it appears as the
symbol of a simple weight, by a special symbol (say the symbol =), since this symbol,
thus introduced, satisfies all conditions required of the prime factor of a chemical equa-
tion. Before interpreting results this symbol is to be put equal to 1. Take, for example,
the equation given, Sec. IL. (12),
o’x(x—1)=0;
putting 1== we have as the equation to the event in question the homogeneous
equation
o’x(y—w)*=0,
whence
(% )y* 4 B0 ) yw® = 3(0’x )y *w 4 (% ),

the symbols of the units which appear in the event being

(@*2)x’

(o) =,

(e’2)x=?,

(o )w®.
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So that each symbol may be regarded as derived from the symbol («’x)y* by the substi-
tution in all possible ways in that symbol of = for y. This relation by way of substi-
tution is a universal bond of chemical functions, and prevails among things, among

groups of things, and among events. It is desirable to indicate this relation by a name
and by a symbol.

(2) Definition :—

Two chemical functions will be said to be congruous to one another in regard to
a special substitution if the two functions are of such a nature that they assume the
same value when that substitution is effected in them respectively. The value which
a function assumes when a special substitution is effected in it will be termed the
“residue” of that function in regard to that substitution, and the symbol of the substi-
tution when it appears in this connexion will be termed a “modulus.” Further, the
symbol =is to be interpreted “is congruous to”; thus, for example, if f(x) be the
symbol of a chemical function of the letter a, if #—a be the symbol of the modulus,
and R the symbol of the residue, |

f(z)=R, modulus (z—a).

This expression is termed a chemical congruence, and is to be read f(2) “is congruous
to” R for the modulus (z-a).
Similarly we have

flx, 9, 2,...)=R, mod (¢—a)mod (y—>&)mod (z—¢)...,

where R is the value which f{#,9, 2, . . .) assumes when in that function & is substituted
for 2, b fory, c forz .. .

(3) I proceed to determine the conditions satisfied by functions congruous to a given
residue for a given modulus.

Let f(z)=R, mod(z—a);

for @ in f{«) we will write a+2—a: we have then

fz)=fla+r—a).

Now since f{) is a rational and integral function of # (for there are no other chemical-
funetions), fla+x—a) is a rational and integral function of (—a). Putting then

Agt- Az —a)+Afz—af+ .. ... A (x—ay

as the general expression for such a function of (z—a), where A,, A}, A,,... A, are
functions of @ and free from #, and where # is a positive integer, we have

flat+z—a)=A+A(z—a)+A(z—a)*+ ... A (e—a).

Now it has been demonstrated (Sec. I. (4)) that every continued product of two or
more chemical factors of the form (z—a)(y—?) . .. is necessarily equal to zero.
MDCCCLXXVIIL. Q



108 SIR B. C. BRODIE ON THE CALCULUS OF CHEMICAL OPERATIONS.

Hence
Ay(z—a)=0,

A, (r—a)=0,
and

flata—a)=A,+A (z—a).
Since this last equation is always true, it is true when 4=« ; putting r=a,

Sa)=Aq;
and also since the residue R is the value of f{z), when 2=aq,

A,=R,
f@)=f0)+A(z—a).

G

r—a

and

To determine A, we have

This equation again being always true is true when £=ea; but the limit of the value of

f&)=fla)

X—a
when 2=a, is f(a), where f,(@) is the first derived function of f{), that is @:%, in which

@ is substituted for 2. 'We have therefore for the value of A,,

A,=f\(a),
S@)=fa)+fi(e)(x—a).

Similarly, in the case of the congruence

f(@, 9)=f(a, b), mod (z—a) mod (y—b),

we have, regarding y as a constant and developing by the above theorem,

J(@ ) :f(a’ y)+ﬁ(a’.y)($_a)’

and

and also
S (e, 9)=f (2, O)+fi(a b)(y—0),
Ji@ y)=fi(a, b)+fi..(e, 8)(y—0);

whence, substituting these values for f{e, y) and f,(«, ), we have

S, y)#f(a, B)+fs.o@ B)a—a)+fir(a B)y—0B)+f.1(a, ) e —a)y—b),

and

S, ))=Fa ) +£. (@, b)(@—a)+f, (@, B)y—D)-
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Similarly, considering the congruence

S, 9, 2)=f(a, b, ¢), mod(z—a)mod (y—b) mod (z—c),
we have

S, 9, 2)=f(a, b, &)+ 1.0.0(0; b, )@ — @) +fo.1.o(@ b, ) (§—0)+fo.0.:(@ b; ) (2—0),

and so on, a similar relation holding good in the general case
F(#,9,2,0,w,...) =f(a,b,¢,d,¢,...), mod(z— a) mod(y — &) mod(z— ¢) mod(v—d) mod(w—e)...

(4) The symbol =, which is here adopted as the symbol of ¢ chemical congruence,”
is used in mathematical investigations of the properties of numbers as the symbol of
numerical congruence. Thus the expression #=—a, mod p indicates to us that the
integral number z satisfies the condition given in the equation #=a+py, where @, p, ¥
are integers as well as «, so that the difference x—a is divisible without remainder by the
modulus p. Now the simplest form of a chemical congruence, f{(#) = f{a), mod (z—a),
is, in the most exact sense, an “algebraical congruence,” for f{«) satisfies the condition
flz)=f(a)+Q(x—a), where f(z), f(a), and Q are respectively rational and integral
functions of x and @, so that f{x)—f{e) is divisible without remainder by the modulus
x—a. In the case of the chemical congruence to two moduli, such as f{#,y) =£,b),
mod (z—a) mod (y—b), where f{, y) satisfies the condition f(, y)=fa, 0)+A,(r—a)
+B,(y—5), an analogous condition prevails. In this case if we divide the difference
flz, y)—f(a, b) by the modulus (#—a) we have as the remainder of the division
fla, y)—f(a, b), which is divisible without remainder by the modulus y—#&. It hence
appears that a “chemical congruence” for two or more moduli is but a wider kind of
numerical congruence, being a comprehensive form in which all such “ congruences ”
are included. The same fundamental idea of congruity is applicable in either case;
and as no confusion is likely to arise from the use of the symbol = as the symbol of
the chemical relation referred to, which is, indeed, the fundamental relation of the
science of chemistry, I have not hesitated to adopt it.

(5) From the various illustrations already given of ¢ simple chemical events,” taken
together with the explanation given in Section II. of the aggregation of events, the
following definition of the ¢theoretical analysis” of a compound chemical event
occurring by any number of substitutions will be readily appreciated.

Definition :—The theoretical analysis of a chemical event occurring by any number
of specified substitutions, namely, by the substitution of @ for a, & for y, ¢ for z, and so
on, will be here said to be effected when all the different chemical events, occurring in
any way whatever by these substitutions, are enumerated, the aggregate of which con-
stitutes the event in question; and the real analysis of such an event will be said to be
completely effected when all these events are severally realized as independent pheno-
mena, and will be said to be partially effected when two or more of such events or
aggregates of such events are so realized.

This analytical problem is presented to us in every chemical congruence.

Q2
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The congruence

fz, 9, 2...)=f(a b,¢...), mod(z—a)mod (y--b)mod (z—c)...
asserts that the residue f{a, b, ¢ ...) is derived from the function f{x, ¥, z...) by the
substitutions specified in the modules. The problem now to be considered is in what
way these substitutions are effected. The solution of this problem is afforded by means
of the following theorem.

The demonstration of TAYLOR’S theorem, in which it is assumed that f{#) may be
developed in a series of ascending powers of 2 with integral indices, is entirely inde-
pendent of the interpretation of the symbols, and is recognized as dependent solely upon
those formal properties of symbols expressed in the equations ay=yz, 2(y+2)=ay+az,
known as the commutative and distributive laws. Now in the first part of this Calculus
(Part I. Sec. IL (5), (6)) it has been fully demonstrated that the symbols of chemical
operations, with the interpretation there assigned to them, satisfy these fundamental

. conditions. Precisely, therefore, as we are enabled through these properties of those
symbols to work with them according to the processes of elementary algebra, so we are
equally justified in applying to them the principles of the differential Calculus regarded

from this point of view. I shall now prove that if f{x) satisfies the condition given in
the congruence '

flz) =fla), mod(x—a),
Fa)=fla)+f(@@—a)+ T 5 fila)@—af+ g fiafo—af +... 4 ph@)a—a),

where fi(@), fi(@), f{(a) ... [.(e) are the first, second, third, and nth derived functions of
f(2) in which @ is substituted for 2.

For let f{«) be any function of #, and in that function let # undergo a variation of
such a nature that & becomes 24 Az ; we then have, by TAYLOR'S theorem,

1 2 1 3 1. n
Pl ) =)+ (2) M+ 15 fi0) A"+ g g SL0)A0 . o)A
Now let Az be that variation which # undergoes when « is substituted for 2; we

have then o4Az=a, Ar=a—2z, and flo4+Az)=f(a). Substituting in the above
development f{a) for f(x+Az) and a—a for Az, we have

F@=fa)+fi@Na—a)+7 5 AN a—a)+y g3 Aafa—oP+... 45 fia)a—a),
whence, changing ¢ into # and # into @,
FO)=AD)+f (@) o— )+ T Sl o=+ 5 Sla)a—af 4.7, fiafa—a.

Now among the properties of chemical functions demonstrated in Sec. I. it has been
shown that every expression of the form (#—a)", when 2> 1, is necessarily equal to zero.
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We may therefore at once resolve the above equation into the following system of
equations :—

L flo)—flo)—f(a)z—a)=0.

I 5 fi(a)fa—ay=0.

I 1y fia)e—a)y=0.

é Fa)(x—a)y=0.

The first of these equations is that which has been already given as indicating the
condition by which f{#) is related to the residue f(@). The aggregate of the succeeding
equations is identical with that equation ; and the eqﬁa‘tions separately considered inform
us of the successive steps by which the result indicated in equation I.,

S J@)=f(a)+fi(a)(z—a),
is attained.

This method of development is applicable to every chemical function; but if f{) be
a chemical equation of the form f{z)=0, it follows from the property of chemical
equations demonstrated (Section I. (8)) that f{a) is also a chemical equation ; whence

F(@=0,
f@)(z—a)=0.

It is to be observed that in this development of f{#) in ascending powers of the
modulus (#—a), the symbols of the units of matter, which appear in the several events
of which f{z) is constituted, are resolved into their components according to the classi-
fication of those components given in Section III. (3), namely, as  variables,” ¢ values,”
and “ constants,”—the ‘“variable ” being symbolized as x, the “value ” of that ‘ variable ”
as @, and the “ constants ”” being given in the coefficients

Aa) 130, 15550 p 1@

This classification of the components of the units of matter thus satisfies the conditions
required of an accurate method of classification, being both exclusive and exhaustive.
A chemical function of two variables f(«, y) satisfying the condition

Sf(#:9)=/(,?), mod (z—a) mod (y—b)
may be developed on precisely the same principles.
Using a similar notation to that previously employed, let
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daf (w,
j; (’)_f:;‘z»y’

df (x,
j;)l(x )__.f( y),

Fialwg)=2L20,

a?f(x,
fo (a,y)="L50)

dz?

d
Frale.)="03",
and generally

dm nf 0

and let
fm. n(“) b):fmn('xa y):

in which @ is substituted for , and & for y.
Now in f{x,y) let  and y respectively vary, so that # becomes £+ Az and y becomes
y-+Ay; we then have, by TAYLOR’S theorem,

Fa-+ A, g+ Ay)=F(z, 5)HF (0 ) Az (2, 9) Dy -+ 15 fi(@, ) A?
+/ia(@ y)AwAyﬁ%ﬁ.z(w,y)Azﬁ+éfa($, y)Aw3+éfz.l(xa y)AL* Dy

1 1, 3 1 ’ m 7
+[“2‘f;2(flf,y)AﬂfA92+|§foa($ay)A2/ e "I’men(x,y)Am Ay )

whence; assuming as before Az to be the variation which  undergoes when « is sub-
stuted for ¢, and Ay the variation which y undergoes when # is substituted for 6, we

have
Ar=a—ux,

Ay:b—g/

Substituting these values in the above development for Az and Ay, and again changing
in the result ¢ into & and « into @, and & into y and ¥ into &, we have

A, gy =fla 0)+f(a, B)e—a) 4o DYy —0) +1g filas D) — a4, (@ B) w—a)(y—1)
oo D=0y g fis D=+ efos Da—a)(y—0)

i s DN+ o DY) - + s D =) (=1

On the principles laid down in the last case, this equation may be resolved into the
following system of equations, by which it is adequately represented :—
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S@,9)=fla, b)+fi(a, b)(w—a)+1..(a, b)(y—0),
g e b)(z—ap=0,
Jia(a; 0)(x—a)(y—b)=0,
(5ol By =30,
gJi(a )z —ay=0,
- plabe—af(y—8)=0,

gl DY e —a)y—bP=0,

g os05 Yy =B =0,

.

i o (@5 D)@ —a) (g — ) =0.

If f{z,y) be a chemical equation, so that

: S, y)=0,
f(a,0) is also a chemical equation, so that
fla, 8)=0;

and, moreover, observing that
S (a,0)(e—a)=f(2,b)—Sf(a,0),
Jo.s(a; 0)(y—8)=fa, y) —f(a, b),

S(a,b) and f'(a,y) also being chemical equations, we have

Ji (@,0)(x—a)=0,
Jo(a, b)(y—b)=0.

In the two last equations, taken together with the equation I% fAa, b)(x—a)*=0 and
the succeeding equations of the system, the theoretical analysis of the event S, 9)=0
is effected, since these equations are collectively identical with the equation f{z, )=0,
and in all respects adequately represent that equation.

By the application of these principles we arrive at the following rule for the develop-
ment of a chemical function f{2,y, 2, v, w,...), which satisfies the congruence
Az, 9,2,0,w,...)=f(a,b,¢,d,e,...), mod(z—a)mod (y—>)mod (z—c¢) mod (v—d)....

Develop by TavLor’s theorem f(x+ Az, y+ Ay, 24402, v+Av, .. .) in ascending
- powers of Az, Ay, Az, Av, Aw, ... Substitute in the development thus effected for
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Az, Ay, Az, Av, ... respectively a—a, b—y, c—z, d—wv, ..., and in the result change ¢
into # and « into @, b into y and y into &, ¢ into z and z into ¢, d into v and v into d,
and so on. 'We hence arrive at the development of f{«,7,2,9,...)in ascending powers
of the moduli #—a, y—b, 2—¢, v—d .... Proceeding as before we have

Az, y,2,0,w, .. )=fla,b,¢,d,e,...)F+f(a,b,¢,d,e,...Nr—a)
Ffo (e, by 6, dy e, .. )y—0)+Ffo.0.4(as b, ¢,d,e,. . ) (2—c)
+7o.0.0.1(, b? ¢, d, e ... (v—d)+&ec.,

together with a system of equations of the form
@16 & No—a) (=) (z—(o—dp .=

Reasoning as before, if f(#, 7,2, v,...) be a chemical equation, we have

S, 9,20,...)=0,

fa, b, e, d,...)=0.

fila, b, ¢, d, .. Nz—a)=0,
Joa(asd,6,d,.. . )(y—0)=0,
Jo.on (@ 0,¢d,...)(z—c)=0,
So.0.01(ab,¢,d,...)(v—a)=0.

In these last equations, taken together with the equations previously referred to of
the second and higher orders, the theoretical analysis of the event f{#,7, 2, v,...)=0 is
effected, these equations collectively representing, for all purposes, the equation
f(@,y,2,0,...)=0.

As a necessary preliminary to the analysis of a compound chemical event, the substi-
tutions must be specified in reference to which the analysis is to be effected. We can
then proceed by means of the preceding theorem to resolve the event f{z,9,2,...)=0
into its constituents, which consist essentially of two groups, the event f{«,d,¢,...)=0,
which does not occur by the substitutions in guestion, and the system of simple events
enumerated in the various terms of the development, occurring in all possible ways by
these substitutions, an analysis which, as we have said, is absolutely exhaustive.

(6) From these considerations we arrive at a more exact definition than has hitherto
been open to us of a normal chemical equation, and of the position which it occupies in
the general algebraical system. We have seen that in the case of any chemical equation

2 Y ’-“:03
iy, z ) fla,b,e,d,...)=0,

Sila,b,¢,4d,.. ) (2—a)=0,
Fon (@ esd,...y—1)=0,
j; 0. l(a,(’) ¢, d,. )(z—c) 0,
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Now, since these equations are always true, they are true when a=1, 6=1, ¢=1;

whence
S, 1,1,1...)=0,
fi(1,1,1,1.. ) (e—1)=0.
,ﬁ).l(]-a 19 13 1.. )(?/_1):0:
Sooa(1,1,1,1...)(2—1)=0.

Hence it follows that if in any chemical equation #=0 the prime factors by which
the equation is expressed be severally and simultaneously put equal to 1 (which is the
only numerical value of chemical symbols), that equation vanishes, and also if we dif-
ferentiate that equation once in regard to any one (and every one) of these factors, and
in the result of that differentiation put all the prime factors severally and simultaneously
equal to 1, that differential coefficient also vanishes*. A chemical equation, therefore,
may be defined as an equation which possesses these properties.

(7) Further, these considerations supply us with a general and comprehensive theory
of the mode of occurrence of chemical events. It has been shown in the first part of
this Calculus that in every chemical equation the symbols of the units of matter are
expressed by the smallest possible number of prime factors when expressed by the factors
o, & 0, % B, @, »,@,... So that every chemical equation regarded as a member of the
general system is of the form

' f(“, E’ 09 X’ ﬁ, @y Yy @, .o .)=0.

Now every such equation necessarily vanishes when the prime factors «, &, 4, »,. .. are
severally and simultaneously put equal to 1, and also admits of being developed in
ascending powers of the moduli (¢ —1), (6—1), (/—1),(x—1),... Hence every chemical
event, without exception, may be considered to occur by the transferences of the simple
weights w(e), w(§), w(d), w(x), . . ., and admits of being resolved into a set of ¢ consti-
tuent simple events ” severally occurring in various ways by these same transferences;
and if we are to refer all chemical events to one set of causes, so as to bring them
under one law, these transferences are the only set of causes to which these phenomena
can be referred. Thus, as we are led to contemplate the resolution of the units of
matter into the ‘ system of simple weights” w(w), w(&), w(8), w(x), . . . as the ultimate

* This latter property of a chemical equation has already been demonstrated in Part I. Section V., and
forms indeed the basis of this Calculus. It here reappears in another form. The condition (1, 1...)=0is
(as is obvious) a necessary property of every chemical equation when brought to the normal form in the way
indicated in Section I. (3). But it may be noticed that the analysis of a chemical event is quite independent
of the prior reduction to this form, which is effected in the course of the development itself. Take, for
example, the equation given in I. Section IV. (1), vy=a+v, the fundamental chemical equation. The equation
in this form does not inform us of the process by which the transformation in question is effected. But put-
ting f(#,y)=wy—a—y and developing we have f(1, 1)=—1, f; 1, 1)=0, f, ,(1, 1)=0, £, ,(1, 1)=1, and
Sfle, y)=—1+(x—1)(y—1) or flw, y)+1=(2—1)(y—1), the equation f(x, y)+1=0 being the equation
wy=x+y reduced to the normal form, namely 1+ay=x+y.

MDCCCLXXVII. R
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limit of the analysis of those units, so here another and not altogether dissimilar
problem is suggested to us—namely, the actual analysis of all chemical events into a
system of simple constituent events occurring in various ways by the transferences to
and fro among the units of matter and space of these same *“simple weights.” We are
far indeed from this ultimate ideal goal, but may yet recognize it on the far horizon
as the limit of our speculations.

(8) We are thus led to regard many events of an apparently simple character as
constituted of numerous other events, some realizable, others not, the concurrence of
which results in those events. To some, even when demonstrated, this may appear a
complex view. But the complexity is not real. It is in truth the simplest possible
doctrine. 'We may compare the aggregates of simple events of which compound events
are constituted to the aggregate of the repeated blows of the hammer, by which (each
falling with a certain force and in a certain requisite direction) two or more pieces of
iron are welded together and shaped to a determinate form. What is here effected is
to specify the kind of blows which are required and the number of blows of each kind.
Now it may be asked, since every chemical event is here referred to one set of causes,
and regarded as occurring by the transferences of the “simple weights” «, &, ¥, .. .,
How are we to interpret such expressions as (v—a), (¥y—ab), when they occur among
the factors of chemical equations? Such expressions apparently involve a change in our
point of view; for (#—a) is not the symbol of the  transference ” of a, but of the sub-
stitution of one “simple weight,” a, for another, #, and (zy—ab) is not the symbol of
any substitution of one simple weight for another, but is the symbol of the substitution
of a compound weight ad for a compound weight 2y. To this it may be replied that
we are here considering results; that the expression (2—a) means the occurrence of a
phenomenon of which the result is the substitution of @ for #. But it does not inform
us of any particular way in which this result is attained. And, in fact, this result may
with equal justice be considered as the aggregate of the two transferences (2 —1)—(a—1)
as a single substitution. Such an expression, therefore, as (r—a)(y—¥b) is always to be
regarded as an abbreviated form of expression for the aggregate

(@=1y=1)—(e—=1)0—-1)—(e—1)(y—1)+(a— 1)(6 -1).
Similarly, developing the expression (zy—ab), we have
2y —ab=(¢—1)+(—1)+(@—1)y—1)—(1—1)—(b—1)—(a—1)(5—1),
so that the event symbolized (for example) as (2y—ab)(z—1) is to be regarded as an
abbreviated expression for the aggregate. of events,
(= 1)e=D)Hy—D)(e—1)+—1)(y—1)e=1)—(a~1)e—1)— (= 1)(=1)
—(a—1)(b—1)(z—1).
It is my intention to lay before the Society, in a further communication, a set of

examples illustrative of the application of the principles of this Calculus to the discus-
sion of special chemical events.



